【題目】“微信運(yùn)動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計(jì)總體的方式,試估計(jì)小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

【答案】(Ⅰ);(Ⅱ)沒有95%以上的把握認(rèn)為二者有關(guān).

【解析】試題分析:(1人中該日走路步數(shù)超過步的有根據(jù)古典概型概率公式即可得出結(jié)果;(2)根據(jù)所給數(shù)據(jù),得出列聯(lián)表,利用公式計(jì)算與臨界值比較,即可得出結(jié)論.

試題解析:(1)由題知,40人中該日走路步數(shù)超過5000步的有34人,頻率為,所以估計(jì)他的所有微信好友中每日走路步數(shù)超過5000步的概率為

(2)

,故沒有95%以上的把握認(rèn)為二者有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中, ,點(diǎn)分別在邊上,且, 于點(diǎn).現(xiàn)將沿折起,使得平面平面,得到圖2.

(Ⅰ)在圖2中,求證: ;

(Ⅱ)若點(diǎn)是線段上的一動點(diǎn),問點(diǎn)什么位置時(shí),二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作直線分別交軸的正半軸于兩點(diǎn).

(Ⅰ)當(dāng)取最小值時(shí),求出最小值及直線的方程;

(Ⅱ)當(dāng)取最小值時(shí),求出最小值及直線的方程;

(Ⅲ)當(dāng)取最小值時(shí),求出最小值及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,以為頂點(diǎn)的六面體中, 均為等邊三角形,且平面平面 平面, , .

(1)求證: 平面;

(2)求此六面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|ex﹣a|+| ﹣1|,其中a,x∈R,e是自然對數(shù)的底數(shù),e=2.71828…
(1)當(dāng)a=0時(shí),解不等式f(x)<2;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)設(shè)a≥ ,討論關(guān)于x的方程f(f(x))= 的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用分層抽樣的方法從某校學(xué)生中抽取一個(gè)容量為60的樣本,其中高二年級抽取20人,高三年級抽取25人,已知該校高一年級共有800人,則該校學(xué)生總數(shù)為人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 軸的交點(diǎn)是橢圓 的一個(gè)焦點(diǎn).

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點(diǎn),是否存在使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有4位同學(xué)在同一天的上、下午參加“身高與體重”、“立定跳遠(yuǎn)”、“肺活量”、“握力”、“臺階”五個(gè)項(xiàng)目的測試,每位同學(xué)上、下午各測試一個(gè)項(xiàng)目,且不重復(fù).若上午不測“握力”項(xiàng)目,下午不測“臺階”項(xiàng)目,其余項(xiàng)目上、下午都各測試一人,則不同的安排方式共有__________種(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案