精英家教網 > 高中數學 > 題目詳情
一個多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點,上的一動點,主視圖與俯視圖都為正方形。

⑴求證:;
⑵當時,在棱上確定一點,使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。
(1)利用線面垂直,,以及,進而證明線線垂直。
(2)

試題分析:① (4分)
②如圖所示,建立空間直角坐標系,

 ,有
 
設平面的法向量為

 令得到
  ∵ 得到 得到P點為A點   (8分)
③平面的法向量為,
設所求二面角為,則  12分)
點評:對于立體幾何中垂直的證明,一般要熟練的掌握線面垂直的判定定理和性質定理來得到,同時能結合向量法表示出二面角,這是一般的求解二面角的方法之一,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。

(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:在底面為直角梯形的四棱錐P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.

(1)求證:BD⊥平面PAC
(2)求二面角B-PC-A的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱中, AC=4,CB=2,AA1=2,
,E、F分別是的中點。

(1)證明:平面平面
(2)證明:平面ABE;
(3)設P是BE的中點,求三棱錐的體積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求證:平面AB1C1⊥平面AC1;
(2) 若AB1⊥A1C,求線段AC與AA1長度之比;
(3) 若D是棱CC1的中點,問在棱AB上是否存在一點E,使DE∥平面AB1C1?若存在,試確定點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知球面上有四點P,A,B,C,滿足PA,PB,PC兩兩垂直,PA=3,PB=4,PC=5,則該球的表面積是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示,已知六棱錐的底面是正六邊形,平面,的中點。

(Ⅰ)求證:平面//平面
(Ⅱ)設,當二面角的大小為時,求的值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

將正方形沿對角線折成直二面角,有如下四個結論:
;     ②△是等邊三角形;
與平面所成的角為60°; ④所成的角為60°.
其中錯誤的結論是(   )
A.①B.②C.③D.④

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)的底面邊長為2,高為2,為邊的中點,動點在表面上運動,并且總保持,則動點的軌跡的周長為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案