設(shè)A、B兩地位于北緯α的緯線上,且兩地的經(jīng)度差為90°,若地球的半徑為R千米,且時(shí)速為20千米的輪船從A地到B地最少需要小時(shí),則α為( )
A.
B.
C.
D.
【答案】分析:先根據(jù)題意畫(huà)出示意圖,欲求α,即求A、B兩地位于北緯多少度,即圖中∠OAQ的大小,根據(jù)球面距離計(jì)算出∠AOB,再結(jié)合直角三角形中的邊角關(guān)系即可求得α.
解答:解:根據(jù)題意畫(huà)出示意圖,如圖.
∵輪船從A地到B地最少距離即為A、B兩地間的球面距離,
為:×20=(R為地球半徑),
∴∠AOB=,
∴在三角形AOB中,AO=AB,
∵A、B兩地經(jīng)度相差90°,
∴∠AQB=90°,在直角三角形AQB中,AB=AQ,
∴在直角三角形AOQ中,AO=AQ,
∴∠OAQ=45°,
即A、B兩地位于北緯45°度,α=45°.
故選B.
點(diǎn)評(píng):本題主要考查了球面距離,球面距離是球面上兩點(diǎn)之間的最短連線的長(zhǎng)度,就是經(jīng)過(guò)這兩點(diǎn)的大圓在這兩點(diǎn)間的一段劣弧的長(zhǎng)度,解答本題的關(guān)鍵是根據(jù)球面距離計(jì)算出∠AOB,再結(jié)合解三角形知識(shí)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B兩地位于北緯α的緯線上,且兩地的經(jīng)度差為90°,若地球的半徑為R千米,且時(shí)速為20千米的輪船從A地到B地最少需要
πR
60
小時(shí),則α為( 。
A、
π
6
B、
π
4
C、
π
3
D、
5
12
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省部分重點(diǎn)中學(xué)聯(lián)考高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)A、B兩地位于北緯α的緯線上,且兩地的經(jīng)度差為90°,若地球的半徑為R千米,且時(shí)速為20千米的輪船從A地到B地最少需要小時(shí),則α為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年湖北省黃岡、宜昌、襄樊、孝感、荊州五市高三(下)4月聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)A、B兩地位于北緯α的緯線上,且兩地的經(jīng)度差為90°,若地球的半徑為R千米,且時(shí)速為20千米的輪船從A地到B地最少需要小時(shí),則α為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年湖北五市聯(lián)考理)設(shè)A,B兩地位于北緯的緯線上,且兩地的經(jīng)度差為,若地球的半徑為千米,且時(shí)速為20千米的輪船從A地到B地最少需要小時(shí),則

     A.          B.           C.               D.

查看答案和解析>>

同步練習(xí)冊(cè)答案