(本題滿分12分)有一枚正方體骰子,六個(gè)面分別寫(xiě)1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面向上的那一個(gè)數(shù)字”。已知b和c是先后拋擲該枚骰子得到的數(shù)字,函數(shù)=

(Ⅰ)若先拋擲骰子得到的數(shù)字是3,求再次拋擲骰子時(shí),使函數(shù)有零點(diǎn)的概率;

(Ⅱ) 求函數(shù)在區(qū)間(—3,+∞)是增函數(shù)的概率

 

 

【答案】

:(1)記“函數(shù)=有零點(diǎn)”為事件A

由題意知:,基本事件總數(shù)為:(3,1)、(3,2)、

(3,3)、(3, 4)、(3,5)、(3,6)共6個(gè)

∵函數(shù)=有零點(diǎn), ∴方程有實(shí)數(shù)根

 ∴             ∴

即事件“函數(shù)=有零點(diǎn)”包含2個(gè)基本事件

故函數(shù)=有零點(diǎn)的概率P(A)=     ………6分

(2)由題意可知:數(shù)對(duì)表示的基本事件:(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)……(6,5)、(6,6),所以基本事件總數(shù)為36。

記“函數(shù)在區(qū)間(—3,+∞)是增函數(shù)”為事件B。由拋物線的開(kāi)口向上,使函數(shù)在區(qū)間(—3,+∞)是增函數(shù),只需   ∴   ∴

所以事件B包含的基本事件個(gè)數(shù)為1×6=6個(gè)    

∴函數(shù)在區(qū)間(—3,+∞)是增函數(shù)的概率P(B)= ………12分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)有混在一起質(zhì)地均勻且粗細(xì)相同的長(zhǎng)分別為1、2、3的鋼管各3根(每根鋼管附有不同的編號(hào)),現(xiàn)隨意抽取4根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的4根首尾相接焊成筆直的一根.

(1)若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),試求隨機(jī)變量的分布列及;

(2)設(shè)的取值從小到大依次為數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,設(shè),當(dāng)時(shí),求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆黑龍江大慶實(shí)驗(yàn)中學(xué)高二上學(xué)期開(kāi)學(xué)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所能獲得的利潤(rùn)依次是P和Q(萬(wàn)元),它們與投入資金x(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式:P=x,Q=.今有3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少,能獲得的最大利潤(rùn)為多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆云南省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤(rùn)分別是萬(wàn)元和萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系為:今有3萬(wàn)元資金投入經(jīng)營(yíng)這兩種商品,為獲得最大利潤(rùn),對(duì)這兩種商品的資金分別投入多少時(shí),能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省09-10高一下學(xué)期數(shù)學(xué)期末試題 題型:解答題

(本題滿分12分) 袋中有大小、形狀相同的紅、黑球各一個(gè),現(xiàn)依次有放回地隨機(jī)摸取

3次,每次摸取一個(gè)球.

      (I) 試問(wèn);一共有多少種不同的結(jié)果? 請(qǐng)列出所有可能的結(jié)果;

      (II) 若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,求3次摸球所得總分為5的概率.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案