解:(I)函數(shù)f(x)=x
3+ax
2+bx+1(x∈R),a,b∈R.函數(shù)f(x)的圖象在點(diǎn)P(1,f(1))處的切線方程為y=x+4.
所以f′(x)=3x
2+2ax+b,所以f′(1)=3+2a+b=1…①,函數(shù)經(jīng)過(guò)(1,f(1)),即:5=1+a+b+1…②;
解①②得:a=-5,b=8;
所以函數(shù)的解析式為:f(x)=x
3-5x
2+8x+1.
(Ⅱ)由(1)可知f′(x)=3x
2-10x+8,令3x
2-10x+8=0,即x=2,x=
,當(dāng)x
時(shí)函數(shù)是增函數(shù),
時(shí)函數(shù)是減函數(shù),x>2時(shí),函數(shù)是增函數(shù),函數(shù)f(x)在區(qū)間
上是單調(diào)函數(shù),
所以k
或k=
或k≥2時(shí),滿足題意.
分析:(I)求出導(dǎo)函數(shù),令導(dǎo)函數(shù)在1處的值為1,函數(shù)經(jīng)過(guò)(1,f(1)),列出方程組求出a,b的值,得到函數(shù)的解析式.
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),通過(guò)導(dǎo)數(shù)為0,求出函數(shù)的極值點(diǎn),求出函數(shù)的單調(diào)區(qū)間,推出k的范圍即可.
點(diǎn)評(píng):本題是中檔題,考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的切線方程的應(yīng)用,函數(shù)的單調(diào)性與單調(diào)區(qū)間的求法,考查計(jì)算能力,轉(zhuǎn)化思想.?碱}型.