lg25+lg2•lg50=
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用對(duì)數(shù)的運(yùn)算性質(zhì)化簡求值.
解答: 解:lg25+lg2•lg50
=lg52+lg2(1+lg5)
=2lg5+lg2+lg2•lg5
=lg5+lg5+lg2+lg2•lg5
=1+lg5(1+lg2).
故答案為:1+lg5(1+lg2).
點(diǎn)評(píng):本題考查了對(duì)數(shù)的運(yùn)算性質(zhì),關(guān)鍵是對(duì)性質(zhì)的記憶,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx關(guān)于x軸對(duì)稱的函數(shù)為( 。
A、g(x)=ln(-x)
B、g(x)=-ln(-x)
C、g(x)=ln(
1
x
D、g(x)=-ln(
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
3
 6-x-x2的單調(diào)遞增區(qū)間是( 。
A、[-
1
2
,2)
B、(-∞,-
1
2
]
C、[-
1
2
,+∞)
D、(-3,-
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Q是有理數(shù),集合X={x|x=a+b
2
,a,b∈Q,x≠0},在下列集合中:(1){2x|x∈X}(2){
x
2
|x∈X}(3){
1
x
|x∈X}(4){x2|x∈X},與X相同的集合是( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)值域?yàn)椋?,8],則F(x)=[f(x)]2-10f(x)-4的值域?yàn)椋ā 。?/div>
A、[-20,-4)
B、[-20,-4]
C、[-29,-20]
D、[-29,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a2=1,a4=5,則a3=( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+4
x
(x≠0).
(1)判斷函數(shù)f(x)在[1,2]上的單調(diào)性,并證明;
(2)求函數(shù)f(x)在[1,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c.且滿足(2a-c)cosB=bcosC,sin2A=sin2B+sin2C-λsinBsinC.(λ∈R).
(Ⅰ)求角B的大。
(Ⅱ)若λ=
3
,求角C;
(Ⅲ)如果△ABC為鈍角三角形,求λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸非負(fù)半軸重合,與單位圓的交點(diǎn)為P(-
4
5
,
3
5
)是α終邊上一點(diǎn),則sinα=
 

查看答案和解析>>

同步練習(xí)冊答案