若函數(shù)f(x)=x3-3x+m有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(1,+∞)
B.(-∞,-1)
C.[-2,2]
D.(-2,2)
【答案】分析:已知條件轉(zhuǎn)化為函數(shù)有兩個(gè)極值點(diǎn),并且極小值小于0,極大值大于0,求解即可.
解答:解:由函數(shù)f(x)=x3-3x+m有三個(gè)不同的零點(diǎn),
則函數(shù)f(x)有兩個(gè)極值點(diǎn),極小值小于0,極大值大于0.
由f′(x)=3x2-3=3(x+1)(x-1)=0,解得x1=1,x2=-1,
所以函數(shù)f(x)的兩個(gè)極值點(diǎn)為 x1=1,x2=-1.
由于x∈(-∞,-1)時(shí),f′(x)>0; x∈(-1,1)時(shí),f′(x)<0; x∈(1,+∞)時(shí),f′(x)>0,
∴函數(shù)的極小值f(1)=m-2和極大值f(-1)=m+2.
因?yàn)楹瘮?shù)f(x)=x3-3x+m有三個(gè)不同的零點(diǎn),
所以 ,解之得-2<m<2.
故選D.
點(diǎn)評(píng):本題是中檔題,考查函數(shù)的導(dǎo)數(shù)與函數(shù)的極值的關(guān)系,考查轉(zhuǎn)化思想和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+
1
x
,則
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3x-1,x∈[-1,l],則下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3+3mx2+nx+m2為奇函數(shù),則實(shí)數(shù)m的值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3bx+b在區(qū)間(0,1)內(nèi)有極小值,則b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值,最小值分別為M,m,則M+m=
-14
-14

查看答案和解析>>

同步練習(xí)冊(cè)答案