..(本小題滿分14分)坐標(biāo)法是解析幾何中最基本的研究方法,坐標(biāo)法是以坐標(biāo)系為橋梁,把幾何問題轉(zhuǎn)化成代數(shù)問題,通過代數(shù)運(yùn)算研究幾何圖形性質(zhì)的方法.請利用坐標(biāo)法解決以下問題:

(Ⅰ)在直角坐標(biāo)平面內(nèi),已知,對任意,試判斷的形狀;

(Ⅱ)在平面內(nèi),已知中,,的中點(diǎn),,求證:.

 

 

 

 

 

【答案】

解:(Ⅰ)解法一:…………3分

   ∴

是直角三角形………………………………………………………6分

 解法二:利用勾股定理(略)

(Ⅱ)解法一:如圖,以為原點(diǎn),所在直線為軸建立平面直角坐標(biāo)系,則

,……………………………8分

,直線的方程為……………………9分

 ,直線的方程為,…………………………………10分

的方程為……………………………………11分

聯(lián)立方程,解得……………………………12分

    ………………………13分

      ∴     又

…………………………………………………14分

    

解法二:如圖,以為原點(diǎn),所在直線為軸建立平面直角坐標(biāo)系,則

……………………8分 

  ∴,直線的方程為…………………9分

   ,直線的方程為,…………………………10分

的方程為…………………………………………………11分

聯(lián)立方程,解得………………………………12分

   …………………………13分

    ∴

  又

  ∴………………………………………………………14分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)AB是橢圓C1的兩個焦點(diǎn),當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案