已知函數(shù)f(x)的自變量取值區(qū)間為A,若其值域也為A,則稱(chēng)區(qū)間A為函數(shù)f(x)的保值區(qū)間,若g(x)=x+n-lnx的保值區(qū)間是[3,+∞),則n的值為
 
考點(diǎn):函數(shù)的值域
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)g(x)的保值區(qū)間得到n的取值范圍,求出函數(shù)的導(dǎo)函數(shù)的增減區(qū)間,3≤1-n即n≤-2時(shí),則g(1-n)=3得n的值即可.
解答: 解:∵g′(x)=1-
1
x
>0,得x>1
所以g(x)在(1,+∞)上為增函數(shù),同理可得g(x)在(0,1)上為減函數(shù).
又因?yàn)間(x)=x+n-lnx的保值區(qū)間是[3,+∞),則定義域?yàn)閇3,+∞)
所以函數(shù)g(x)在[3,+∞)上單調(diào)遞增
g(x)min=g(3)=3+n-ln3=3,
所以n=ln3.
故答案為:ln3.
點(diǎn)評(píng):本題主要考查學(xué)生求函數(shù)定義域、值域的能力,以及利用導(dǎo)數(shù)研究函數(shù)增減性的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式:
(1)
5-32
+
(-
2
)2
;
(2)化簡(jiǎn)(a 
2
3
b 
1
2
)(-3a 
1
2
b 
1
3
)÷(
1
3
a 
1
6
b 
5
6
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=log2(1-x).
(1)求f(x)的定義域;    
(2)求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某食品廠為.檢查一條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上的40件產(chǎn)品作為樣本稱(chēng)出它們的重量(單位:克),作出樣本的頻率分布直方圖如圖所示.
(1)根據(jù)頻率分布直方圖,則重量超過(guò)505克的產(chǎn)品數(shù)量有
 
件;
(2)從流水線上任取3件產(chǎn)品,則其中恰有2件產(chǎn)品的重量超過(guò)505克的概率=
 
;(先列式再化成最簡(jiǎn)分?jǐn)?shù))
(3)在這40件產(chǎn)品中任取2件,設(shè)ξ為重量超過(guò)505克的產(chǎn)品數(shù)量,求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(m2-m-1)x m2-2m-1是冪函數(shù),則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)=log0.5(6-x-x2)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3和y=x 
1
3
所圍成的封閉圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某戰(zhàn)士射擊1次,未中靶的概率是0.05,中靶環(huán)數(shù)大于5的概率為0.7,則中靶環(huán)數(shù)大于0且小于5的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log65,b=log0.56,c=0.3-2,則a、b、c從小到大排列是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案