精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)已知橢圓的左、右焦點分別為,離心率,右準線方程. (1)求橢圓的標準方程;(2)過點的直線與該橢圓相交于M、N兩點,且求直線的方程式.
(Ⅰ)   (Ⅱ)
:(1)由條件有解得,                   
 所以,所求橢圓的方程為 
(2)由(Ⅰ)知、                   
若直線L的斜率不存在,則直線L的方程為
代入橢圓方程的不妨設M 、N
,與題設矛盾。 
∴直線的斜率存在。設直線的斜率為,則直線的方程為
聯立
由根與系數的關系知,從而
又∵,∴

      化簡得
解得(舍) ∴所求直線的方程為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

若點M到兩定點F1(0,-1),F2(0,1)的距離之和為2,則點M的軌跡是 (   )
.橢圓       .直線      .線段     .線段的中垂線.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題




A.16B.C.8D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題


查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖, 兩點分別在射線OS,OT上移動,
,O為坐標原點,動點P滿足.
(1)求的值
(2)求點P的軌跡C的方程,并說明它表示怎樣的曲線.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,平面直角坐標系中,為兩等腰直角三角形,,C(a,0)(a>0).設的外接圓圓心分別為,

(Ⅰ)若⊙M與直線CD相切,求直線CD的方程;
(Ⅱ)若直線AB截⊙N所得弦長為4,求⊙N的標準方程;
(Ⅲ)是否存在這樣的⊙N,使得⊙N上有且只有三個點到直線AB的距離為,若存在,求此時⊙N的標準方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C1的方程為,雙曲線C2的左、右焦點分別為C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點。求雙曲線C2的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線y2=2px(p>0)的焦點為F,直線L:2px+3y=p2。
⑴當p為何值時,焦點F到直線L的距離最大;
⑵在第⑴題下,又若拋物線與直線L相交于A、B兩點。求△ABF的面積。

查看答案和解析>>

同步練習冊答案