如圖,等邊三角形OAB的邊長(zhǎng)為8,且其三個(gè)頂點(diǎn)均在拋物線E:x2=2py(p>0)上.
(1) 求拋物線E的方程;
(2) 設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線y=-1相交于點(diǎn)Q.證明:以PQ為直徑的圓恒過(guò)y軸上某定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知一扇形的中心角是α,所在圓的半徑是R.
(1) 若α=60°,R=10cm,求扇形的弧長(zhǎng)及該弧所在的弓形面積;
(2) 若扇形的周長(zhǎng)是一定值C(C>0),當(dāng)α為多少弧度時(shí),該扇形有最大面積?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知橢圓+y2=1的左頂點(diǎn)為A,過(guò)A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點(diǎn).
(1) 當(dāng)直線AM的斜率為1時(shí),求點(diǎn)M的坐標(biāo);
(2) 當(dāng)直線AM的斜率變化時(shí),直線MN是否過(guò)x軸上的一定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)給出證明,并求出該定點(diǎn);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
拋物線y2=4x上一點(diǎn)M到焦點(diǎn)的距離為3,則點(diǎn)M的橫坐標(biāo)x=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線l1:y=x和l2:y=-x 相切的圓,
(1) 求定點(diǎn)N的坐標(biāo);
(2) 是否存在一條直線l同時(shí)滿足下列條件:
① l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
② l被圓N截得的弦長(zhǎng)為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C.若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.
(1) 若∠F1AB=90°,求橢圓的離心率;
(2) 若,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)下列條件,求雙曲線方程.
(1) 與雙曲線=1有共同的漸近線,且過(guò)點(diǎn)(-3,2);
(2) 與雙曲線=1有公共焦點(diǎn),且過(guò)點(diǎn)(3,2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com