(2008•海珠區(qū)一模)已知函數(shù)f(x)=x3+3ax-1
(1)若函數(shù)y=f(x)在x=-1時有與x軸平行的切線,求f(x)的表達式;
(2)設g(x)=
13
[af'(x)-3a2+3],其中f-1(x)是f(x)的導函數(shù),若函數(shù)g(x)的圖象與直線y=x相切,求a的值;
(3)設a=-m2,當實數(shù)m在什么范圍內變化時,函數(shù)y=f(x)的圖象與直線y=3只有一個公共點.
分析:(1)求導,根據(jù)函數(shù)y=f(x)的圖象在x=-1時有與x軸平行的切線,利用導數(shù)的幾何意義,可知f′(-1)=0,解方程即可求得結果;
(2)先求出函數(shù)g(x),再利用函數(shù)g(x)的圖象與直線y=x相切,建立方程組,從而可求a的值
(3)先求f′(x)=3x2-3m2,再進行分類討論:①當m=0時,f(x)=x3-1的圖象與直線y=3只有一個公共點;②當m≠0時,求得極值,明確關鍵點,再利用圖象間的關系求解.
解答:解:(1)f′(x)=3x2+3a
∵函數(shù)y=f(x)在x=-1時有與x軸平行的切線
∴f′(-1)=3+3a=0
∴a=-1
∴f(x)=x3-ax-1
(2)g(x)=
1
3
[af′(x)-3a2+3]=
1
3
[a(3x2+3a)-3a2+3]=ax2+1,
設函數(shù)g(x)=ax2+1與直線y=x的切點是P(x0,y0),
則有
2ax0=1
y0=x0
y0=ax02+1
,解得a=
1
4

(3)f′(x)=3x2-3m2
①當m=0時,f(x)=x3-1的圖象與直線y=3只有一個公共點
②當m≠0時,f(x)極小=f(|m|)=-2m2×|m|-1<-1
又∵f(x)的值域是R,且在(|m|,+∞)上單調遞增
∴當x>|m|時函數(shù)y=f(x)的圖象與直線y=3只有一個公共點.
當x<|m|時,恒有f(x)≤f(-|m|)
由題意得f(-|m|)<3
即2m2×|m|-1=2|m|3-1<3
解得m∈(-
32
,0)∪(0,
32
)

綜上,m的取值范圍是(-
32
,
32
)

點評:本題考查導數(shù)的幾何意義,考查利用導數(shù)研究函數(shù)的極值問題,考查數(shù)形結合的數(shù)學思想方法,同時考查靈活應用知識分析解決問題的能力和運算能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2008•海珠區(qū)一模)如圖,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內的兩個測點C與D.現(xiàn)測得∠BCD=75°,∠BDC=60°,CD=s,并在點C測得塔頂A的仰角為30°,求塔高AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•海珠區(qū)一模)已知x,y滿足約束條件  
x-y+4≥0
x+y≥0
x≤3
 則z=x+2y的最大值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•海珠區(qū)一模)用二分法求方程x3-x-1=0在區(qū)間(0,2]內的實數(shù)解(精確到0.1),其參考數(shù)據(jù)如下:
f(0)=-1 f(2)=5 f(1)=-1 f(1.5)=0.875
f(1.25)=-0.2977 f(1.375)=0.225 f(1.3125)=-0.052 f(1.34375)=0.083
那么方程x3-x-1=0在區(qū)間(0,2]內的一個近似解(精確到0.1)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•海珠區(qū)一模)如果一個幾何體的三視圖是如圖所示(單位長度:cm則此幾何體的表面積是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•海珠區(qū)一模)橢圓的中心是坐標原點,焦點是雙曲線2x2-4y2=1的頂點,長軸的端點是該雙曲線的焦點,則橢圓的離心率是(  )

查看答案和解析>>

同步練習冊答案