設(shè)函數(shù)f ( x ) = λ x,其中λ > 0。

(1)求λ的取值范圍,使函數(shù)f ( x )在區(qū)間 [ 0,+ ∞ ])上是單調(diào)函數(shù);

(2)此種單調(diào)性能否擴(kuò)展到整個定義域( ∞,+ ∞ )上?

(3)求解不等式2 x < 12。

解析:(1)f ' ( x ) = λ,由f ' ( x ) ≤ 0,得( x + 1 ) 2 ,x 1或x 1,由 1 ≤ 0,得λ ≥,即當(dāng)λ ≥時,f ( x )在區(qū)間 [ 0,+ ∞ ])上是單調(diào)遞減函數(shù);

(2)因?yàn)闊o論λ取何值,( ∞, 1 )]∪[ 1,+ ∞ ]) Ì ( ∞,+ ∞ ),所以此種單調(diào)性不能擴(kuò)展到整個定義域( ∞,+ ∞ )上;

(3)令t =,則x = t 3 1,不等式可化為2 t 3 t 14 < 0,即 ( t 2 ) ( 2 t 2 + 4 t + 7 ) < 0,而2 t 2 + 4 t + 7 > 0,∴ t 2 < 0,即t < 2,∴ < 2,x < 7。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3+3x2+6x+4,a,b都是實(shí)數(shù),且f(a)=14,f(b)=-14,則a+b的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an滿足Sn=
1
2
(1-an).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)函數(shù)f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求Tn=
1
b1
+
1
b2
+
1
b3
+
1
bn
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1  (x>0)
-1(x<0)
,則不等式xf(x)+x≤4的解集是
(-∞,0)∪(0,2]
(-∞,0)∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-1,當(dāng)自變量x由1變到1.1時,函數(shù)的平均變化率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案