【題目】如圖,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長為3的正方形,側(cè)棱AA1長為4,且AA1與A1B1 , A1D1的夾角都是60°,則AC1的長等于(

A.10
B.
C.
D.

【答案】C
【解析】解:因?yàn)? ;
∴( 2=( + + 2
=( 2+( 2+( 2+2 +2 +2
=42+32+32+2×4×3cos120°+2×4×3cos120°+2×3×3cos90°
=10.
∴AC1=
故選C.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解棱柱的結(jié)構(gòu)特征(兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),如果對于任意x∈[a,b]均有|f(x)﹣g(x)|≤1成立,則稱函數(shù)f(x)和g(x)在區(qū)間[a,b]上是接近的.若f(x)=log2(ax+1)與g(x)=log2x在區(qū)[1,2]上是接近的,則實(shí)數(shù)a的取值范圍是( )
A.[0,1]
B.[2,3]
C.[0,2)
D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究所計劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:

產(chǎn)品A(件)

產(chǎn)品B(件)

研制成本、搭載費(fèi)用之和(萬元)

20

30

計劃最大資金額300萬元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計收益(萬元)

80

60

試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點(diǎn)O為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線L:y=kx+m與橢圓C相交于A、B兩點(diǎn),且kOAkOB=﹣ ,求證:△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有8名奧運(yùn)會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

)求 被選中的概率;

)求 不全被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題P:將函數(shù)sin2x的圖象向右平移 個單位得到函數(shù)y=sin(2x﹣ )的圖象;命題Q:函數(shù)y=sin(x+ )cos( ﹣x)的最小正周期是π,則復(fù)合命題“P或Q”“P且Q”“非P”為真命題的個數(shù)是個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王在年初用50萬元購買一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運(yùn)輸收入均為25萬元.小王在該車運(yùn)輸累計收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價格為25x萬元(國家規(guī)定大貨車的報廢年限為10年).

1)大貨車運(yùn)輸?shù)降趲啄昴甑祝撥囘\(yùn)輸累計收入超過總支出?

2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大(利潤=累計收入+銷售收入-總支出)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處有極值10.

(Ⅰ)求實(shí)數(shù), 的值;

(Ⅱ)設(shè)時,討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案