(10分)已知函數(shù),,
①判斷在上的單調(diào)性,并證明你的結(jié)論。
②如果在區(qū)間上有最大值3,求m的值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)在定義域內(nèi)是增函數(shù)還是減函數(shù)?請(qǐng)說(shuō)明理由;
(3)已知,解關(guān)于不等式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年海南省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),判斷它的奇偶性。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年四川省高三2月月考數(shù)學(xué)理卷 題型:解答題
(本小題14分)
已知函數(shù)的圖像在[a,b]上連續(xù)不斷,定義:
,,其中表示函數(shù)在D上的最小值,表示函數(shù)在D上的最大值,若存在最小正整數(shù)k,使得對(duì)任意的成立,則稱函數(shù)為上的“k階收縮函數(shù)”
(1)若,試寫出,的表達(dá)式;
(2)已知函數(shù)試判斷是否為[-1,4]上的“k階收縮函數(shù)”,
如果是,求出對(duì)應(yīng)的k,如果不是,請(qǐng)說(shuō)明理由;
已知,函數(shù)是[0,b]上的2階收縮函數(shù),求b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省武漢市高一上學(xué)期期中聯(lián)考數(shù)學(xué) 題型:解答題
已知函數(shù).試判斷此函數(shù)在上的單調(diào)性并求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣州省2009-2010學(xué)年高二學(xué)科競(jìng)賽(數(shù)學(xué)理) 題型:解答題
(本小題滿分14分)已知函數(shù)()
(1) 判斷函數(shù)的單調(diào)性;
(2) 是否存在實(shí)數(shù)使得函數(shù)在區(qū)間上有最小值恰為? 若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com