【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報(bào)名,其中報(bào)名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個(gè)容量為n的樣本參加救援隊(duì),若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時(shí),若采用系統(tǒng)抽樣,則需剔除1個(gè)報(bào)名人員,則抽取的救援人員為________.

【答案】6

【解析】

根據(jù)采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員,結(jié)合抽取人數(shù)為正整數(shù),則可得到n=612,1836,再由采用系統(tǒng)抽樣需剔除1個(gè)報(bào)名人員,即可得到n=6。

報(bào)名人員共36人,當(dāng)樣本容量為n時(shí),

因?yàn)椴捎孟到y(tǒng)抽樣和分層抽樣,均不用剔除人員

所以的正約數(shù),又因?yàn)?/span>

系統(tǒng)抽樣間隔,分層抽樣比例,

抽取醫(yī)技人,護(hù)士人,

醫(yī)生

n6的倍數(shù),36的約數(shù),即n=612,18,36

當(dāng)抽取n+1人時(shí),總?cè)藬?shù)中剔除1人為35人,

系統(tǒng)抽樣間隔,所以n=6.

故答案為:6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱(chēng)“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同排課順序共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐PABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,E,F分別是BCPC的中點(diǎn).

(I)證明:AEPD;

(II)設(shè)ABPA2,

①求異面直線PBAD所成角的正弦值;

②求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線,,為左,右焦點(diǎn),直線過(guò)右焦點(diǎn),與雙曲線的右焦點(diǎn)交于,兩點(diǎn),且點(diǎn)軸上方,若,則直線的斜率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知f(x)=|x+a|(a∈R).

(1)若f(x)≥|2x﹣1|的解集為[0,2],求a的值;

(2)若對(duì)任意x∈R,不等式f(x)+|x﹣a|≥3a﹣2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),求的極值;

(2)證明:.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是連續(xù)的偶函數(shù),且時(shí), 是單調(diào)函數(shù),則滿(mǎn)足的所有之積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳通過(guò)查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬(wàn)人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù) (萬(wàn)人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購(gòu)買(mǎi)原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷(xiāo)售收入為700元,多余的原材料只能無(wú)償返還,據(jù)悉本次交易大會(huì)大約有15萬(wàn)人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買(mǎi)多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷(xiāo)售收入原材料費(fèi)用).

參考公式: , .

參考數(shù)據(jù): , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,以橢圓E的長(zhǎng)軸和短軸為對(duì)角線的四邊形的面積為.

1)求橢圓E的方程;

2)若直線與橢圓E相交于AB兩點(diǎn),設(shè)P為橢圓E上一動(dòng)點(diǎn),且滿(mǎn)足O為坐標(biāo)原點(diǎn)).當(dāng)時(shí),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案