【題目】已知等比數(shù)列中, , 成等差數(shù)列;數(shù)列中的前項和為, .
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
【答案】(1) ,;(2) .
【解析】試題分析:(1)根據(jù), 成等差數(shù)列列出關(guān)于首項 ,公比 的方程組,解得、的值,即可得到數(shù)列的通項公式,當時, ,( 也適合);(2)由(1)知根據(jù)等比數(shù)列的求和公式和裂項相消求和以及分組即可求出數(shù)列的前項和.
試題解析:(1)設(shè)等比數(shù)列的公比為;
因為成等差數(shù)列,故
,
即,故;
因為,即.
因為,故當時, .
當時, ;
綜上所述.
(2)由(1)知;
故數(shù)列的前項和為
.
【方法點晴】本題主要考查等差數(shù)列的通項與求和公式,以及裂項相消法求數(shù)列的和,屬于中檔題. 裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構(gòu)特點,常見的裂項技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導(dǎo)致計算結(jié)果錯誤.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知底面為平行四邊形, ,三角形為銳角三角形,面面,設(shè)為的中點.
求證: (1) 面;
(2) 面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是定義在上的偶函數(shù), ,都有,且當時, ,若函數(shù)()在區(qū)間內(nèi)恰有三個不同零點,則實數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假設(shè)花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知曲線,以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,梯形中, 為中點.將沿翻折到的位置,如圖2.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線與平面所成角的正弦值;
(Ⅲ)設(shè)分別為和的中點,試比較三棱錐和三棱錐(圖中未畫出)的體積大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰梯形中, ,上底,下底,點為下底的中點,現(xiàn)將該梯形中的三角形沿線段折起,形成四棱錐.
(1)在四棱錐中,求證: ;
(2)若平面與平面所成二面角的平面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com