分析 先判斷函數(shù)f(x)是R上的單調(diào)遞減函數(shù),再運(yùn)用定義進(jìn)行證明,作差得f(x1)-f(x2)=(x2-x1)[(x2+$\frac{1}{2}$x1)2+$\frac{3}{4}$x12)],即可下結(jié)論.
解答 解:函數(shù)f(x)=-x3+1在R上為單調(diào)遞減函數(shù),證明如下:
任取x1,x2∈(-∞,+∞),且x1<x2,
則f(x1)-f(x2)=(-x13+1)-(-x23+1)
=x23-x13
=(x2-x1)(x22+x1x2+x12)
=(x2-x1)[(x2+$\frac{1}{2}$x1)2+$\frac{3}{4}$x12)],
其中,x2-x1>0,(x2+$\frac{1}{2}$x1)2+$\frac{3}{4}$x12>0恒成立,
所以,f(x1)>f(x2)恒成立,
故f(x)為R上的單調(diào)遞減函數(shù),證畢.
點(diǎn)評(píng) 本題主要考查了函數(shù)單調(diào)性的判斷和證明,通過對(duì)差式進(jìn)行合理的恒等變形是解題的關(guān)鍵,涉及到作差法和配方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∉R,使得$x_0^2>4$ | B. | ?x0∉R,使得$x_0^2≤4$ | ||
C. | ?x∈R,x2>4 | D. | ?x∈R,x2≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (6,7) | B. | (7,8) | C. | (8,9) | D. | (9,10) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0) | B. | (0,+∞) | C. | (1,+∞) | D. | (-∞,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在正三棱錐中,斜高大于側(cè)棱 | |
B. | 有一條側(cè)棱垂直于底面的棱柱是直棱柱 | |
C. | 底面是正方形的棱錐是正四棱錐 | |
D. | 有一個(gè)面是多邊形,其余各面均為三角形的幾何體是棱錐 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com