精英家教網 > 高中數學 > 題目詳情

函數y=f(x)的圖象是兩條直線的一部分(如圖所示),其定義域為[-1,0)∪(0,1],則不等式f(x)-f(-x)>-1的解集為________.


分析:由圖象可知y=f(x)為奇函數,所以f(x)-f(-x)>-1?f(x)>-.據不等式的幾何意義觀察圖象知y=f(x)圖象在y=-上方部分即得到f(x)-f(-x)>-1的解集.
解答:觀察函數的圖象可知y=f(x)為奇函數,
∴f(x)-f(-x)>-1?2f(x)>-1,
∴f(x)>-
∴y=f(x)和y=-的交點的橫坐標為,
根據不等式的幾何意義觀察圖象知y=f(x)圖象在y=-上方部分即得到f(x)-f(-x)>-1的解集.
∴f(x)-f(-x)>-1的解集為[-1,-)∪(0,1].
故答案為:[-1,-)∪(0,1].
點評:本題考查函數的圖象和性質,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知冪函數y=f(x)的圖象過點(2,
2
2
),試求出此函數的解析式,并作出圖象,判斷奇偶性、單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+alnxx
,(a∈R).
(1)若函數f(x)在x=1處取得極值,求實數a的值;
(2)在(1)條件下,若直線y=kx與函數y=f(x)的圖象相切,求實數k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

把函數y=lnx-2的圖象按向量
α
=(-1,2)平移得到函數y=f(x)的圖象.
(1)若x>0,證明;f(x)>
2x
x+2
;
(2不等式
1
2
x2≤f(x2)+m2-2bm-3對b∈[-1,1],x∈[-1,1]時恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)設函數y=f(x)=x(x-a)(x-b)(a、b∈R).
(Ⅰ)若a≠b,ab≠0,過兩點(0,0)、(a,0)的中點作與x軸垂直的直線,此直線與函數y=f(x)的圖象交于點P(x0,f(x0)),求證:函數y=f(x)在點P處的切 線過點(
4
3
3
,0);
(Ⅱ)若a=b(a≠0),且當x∈[0,|a|+1]時f(x)<2a2恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)的定義域為[-1,5],部分對應值如下表,f(x)的導函數y=f′(x)的圖象如圖所示,給出關于f(x)的下列命題:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函數y=f(x)在x=2取到極小值;
②函數f(x)在[0,1]是減函數,在[1,2]是增函數;
③當1<a<2時,函數y=f(x)-a有4個零點;
④如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最小值為0.
其中所有正確命題是
①③④
①③④
(寫出正確命題的序號).

查看答案和解析>>

同步練習冊答案