已知命題p:?x∈R,x2+2x+2>0.則命題p的否定?p:
 
考點:特稱命題,命題的否定
專題:簡易邏輯
分析:根據(jù)全稱命題的否定是特稱命題即可得到結(jié)論.
解答: 解:根據(jù)全稱命題的否定是特稱命題得到命題p的否定?p:
?x∈R,x2+2x+2≤0.
故答案為:?x∈R,x2+2x+2≤0.
點評:本題主要考查含有量詞的命題的否定,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系xoy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定,若M(x,y)為D上的動點,點A(
2
,0),則z=|
AM
|的最大值為(  )
A、6
B、
6
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合Tn={X|X=(x1x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Tn,定義;
AB
=(b1-a1,b2-a2,…,bn-an)
,λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當(dāng)n=5時,設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5;
(Ⅱ)證明:若A,B,C∈Tn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈Tn.若A,B∈Tn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
2x+y-4≥0
x-y+1≥0
x-ay-2≤0
時,若目標(biāo)函數(shù)z=x+y既有最大值也有最小值,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
x2-2x
,當(dāng)x>1時,不等式k(x-1)<xf(x)+2g′(x)+3恒成立,則整數(shù)k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(a,1)和曲線C:x2+y2-x-y=0,若過點A的任意直線都與曲線C至少有一個交點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個容量為40的樣本,分成若干組,在它的頻率分布直方圖中,某一組相應(yīng)的小長方形的面積為0.4,則該組的頻數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個結(jié)論:
①若命題p:?x0R,x02+x0+1<0,則?p:?x∈R,x2+x+1≥0;
②“(x-3)(x-4)=0”是“x-3=0”的充分而不必要條件;
③命題“若m>0,則方程x2+x-m=0有實數(shù)根”的逆否命題為:“若方程x2+x-m=0沒有實數(shù)根,則m≤0”;
④若a>0,b>0,a+b=4,則
1
a
+
1
b
的最小值為1.
其中正確結(jié)論的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)橢圓C的中心在原點,焦點在x軸上,短半軸長為2,橢圓C長軸的右端點到其右焦點的距離為
5
-1

(1)求橢圓C的方程.
(2)設(shè)直線l與橢圓C相交于A,B兩點,且∠AOB=
π
2
.求證:原點O到直線AB的距離為定值.
(3)在(2)的條件下,求AB的最小值.

查看答案和解析>>

同步練習(xí)冊答案