【題目】已成橢圓C: =1(a>b>0)的左右頂點(diǎn)分別為A1、A2 , 上下頂點(diǎn)分別為B2/B1 , 左右焦點(diǎn)分別為F1、F2 , 其中長軸長為4,且圓O:x2+y2= 為菱形A1B1A2B2的內(nèi)切圓.
(1)求橢圓C的方程;
(2)點(diǎn)N(n,0)為x軸正半軸上一點(diǎn),過點(diǎn)N作橢圓C的切線l,記右焦點(diǎn)F2在l上的射影為H,若△F1HN的面積不小于 n2 , 求n的取值范圍.

【答案】
(1)解:由題意知2a=4,所以a=2,

所以A1(﹣2,0),A2(2,0),B1(0,﹣b),B2(0,b),則

直線A2B2的方程為 ,即bx+2y﹣2b=0,

所以 = ,解得b2=3,

故橢圓C的方程為


(2)解:由題意,可設(shè)直線l的方程為x=my+n,m≠0,

聯(lián)立 ,消去x得(3m2+4)y2+6mny+3(n2﹣4)=0,(*)

由直線l與橢圓C相切,得△=(6mn)2﹣4×3×(3m2+4)(n2﹣4)=0,

化簡得3m2﹣n2+4=0,

設(shè)點(diǎn)H(mt+n,t),由(1)知F1(﹣1,0),F(xiàn)2(1,0),則 =﹣1,

解得:t=﹣ ,

所以△F1HN的面積 = (n+1)丨﹣ 丨=

代入3m2﹣n2+4=0,消去n化簡得 = 丨m丨,

所以 丨m丨≥ n2= (3m2+4),解得 ≤丨m丨≤2,即 ≤m2≤4,

從而 ≤4,又n>0,

所以 ≤n≤4,

n的取值范圍為[ ,4]


【解析】(1)由題意求得a,直線A2B2的方程為 ,利用點(diǎn)到直線的距離公式,即可求得b的值,求得橢圓C的方程;(2)設(shè)直線方程,代入橢圓方程,由△=0,求得m和n的關(guān)系,利用三角形的面積公式,求得m的取值范圍,代入即可求得n的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2cosx,sinx), =(cosx,2 cosx),函數(shù)f(x)= ﹣1.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)在銳角△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,tanB= ,對(duì)任意滿足條件的A,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=2|x|﹣4的圖象與曲線C:x2+λy2=4恰有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)λ的取值范圍是(
A.[﹣ ,
B.[﹣ , ]
C.(﹣∞,﹣ ]∪(0,
D.(﹣∞,﹣ ]∪[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左、右焦點(diǎn)為F1 , F2 , 設(shè)點(diǎn)F1 , F2與橢圓短軸的一個(gè)端點(diǎn)構(gòu)成斜邊長為4的直角三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)A,B,P為橢圓C上三點(diǎn),滿足 = + ,記線段AB中點(diǎn)Q的軌跡為E,若直線l:y=x+1與軌跡E交于M,N兩點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)x,y滿足不等式組 ,目標(biāo)函數(shù)z=kx﹣y的最大值為12,最小值為0,則實(shí)數(shù)k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線 (a>0,b>0)的右焦點(diǎn)F2(c,0)作圓x2+y2=a2的切線,切點(diǎn)為M,延長F2M交拋物線y2=﹣4cx于點(diǎn)P,其中O為坐標(biāo)原點(diǎn),若 ,則雙曲線的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y∈R,向量 分別為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若向量 , ,且
(Ⅰ)求點(diǎn)M(x,y)的軌跡C的方程;
(Ⅱ)設(shè)橢圓 ,P為曲線C上一點(diǎn),過點(diǎn)P作曲線C的切線y=kx+m交橢圓E于A、B兩點(diǎn),試證:△OAB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)a,b,c,d滿足 = =1,則(a﹣c)2+(b﹣d)2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={3a,3},B={a2+2a,4},A∩B={3},則A∪B等于(
A.{3,5}
B.{3,4}
C.{﹣9,3}
D.{﹣9,3,4}

查看答案和解析>>

同步練習(xí)冊答案