從圓x2-2x+y2-2y+1=0外一點P(-1,1)向這個圓作兩條切線,則該圓夾在兩切線間的劣弧的長為( 。
A、
3
B、
π
3
C、
π
6
D、
6
考點:圓的切線方程
專題:計算題,直線與圓
分析:將圓方程化為標準方程,找出圓心坐標與半徑r,求出AP,∠APB,進而得出∠BAC的度數(shù),利用弧長公式即可求出弧BC的長.
解答: 解:圓x2-2x+y2-2y+1=0化為標準方程為(x-1)2+(y-1)2=1,
∴圓心(1,1),半徑r=1,
設(shè)過點P(-1,1),|AP|=2.∠APB=∠APC=
π
6
,
∠BAC=π-
π
3
=
3

∵r=1,∴
BC
=
3

故選:A.
點評:此題考查了直線與圓的位置關(guān)系,涉及的知識有:圓的標準方程,點到直線的距離公式,直線斜率與傾斜角間的關(guān)系,以及弧長公式,熟練掌握公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知一個幾何體的三視圖如圖所示,則該幾何體的體積為
 
cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,且該幾何體的體積是2,則正(主)視圖的面積等于( 。
A、2
B、
9
2
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意實數(shù)x,|x+1|+|x-2|>a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P是圓C:(x+2)2+y2=4上的動點,定點F(2,0),線段PF的垂直平分線與直線CP的交點為Q,則點Q的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x=3cosφ
y=5sinφ
(φ為參數(shù))的長軸長為(  )
A、3B、5C、6D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=
3
,BC=2
,點M是A1B的中點,點N是B1C的中點,連接MN.
(1)證明:MN⊥平面ABB1A1;
(2)若點P是CC1的中點,求四面體B1-APB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)函數(shù)f(x)=4x(x>1)的反函數(shù)f-1(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的函數(shù),g(x)=
C
0
n
f(
0
n
)x0(1-x)n+
C
1
n
f(
1
n
)x(1-x)n-1+…+
C
n
n
f(
n
n
)xn(1-x)0
(1)若f(x)=1,求g(x);
(2)若f(x)=x,求g(x).

查看答案和解析>>

同步練習冊答案