(2013•許昌二模)設(shè)Xn={1,2,3…n}(n∈N*),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,則Sn=
(n-1)2n+1
(n-1)2n+1
分析:由題意得對(duì)M的任意非空子集A一共有2n-1個(gè):在所有非空子集中每個(gè)元素出現(xiàn)2n-1次可以推出有2n-1個(gè)子集含n,有2n-2個(gè)子集不含n含n-1,有2n-3子集不含n,n-1,含n-2…有2k-1個(gè)子集不含n,n-1,n-2…k-1,而含k,進(jìn)而利用錯(cuò)位相減法求出其和.
解答:解:由題意得:在所有非空子集中每個(gè)元素出現(xiàn)2n-1次.
故有2n-1個(gè)子集含n,有2n-2個(gè)子集不含n含n-1,有2n-3子集不含n,n-1,含n-2…有2k-1個(gè)子集不含n,n-1,n-2…k-1,而含有k.
∵定義f(A)為A中的最大元素,
∴Sn=2n-1×n+2n-2×(n-1)+…+21×2+1
Sn=1+21×2+22×3+23×4+…2n-1×n①
又2Sn=2+22×2+23×3+24×4+…2n×n…②錯(cuò)位相減,
∴①-②可得-Sn=1+21+22+23+…+2n-1-2n×n
∴Sn=(n-1)2n+1
∴S3=(3-1)×23+1=17.
故答案為:(n-1)2n+1.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是讀懂并且弄清題意,結(jié)合數(shù)列求和的方法求其和即可,找出規(guī)律是關(guān)鍵,此題難度比較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)函數(shù)f(x)=Asin(ωx+
π
6
)(ω>0)
的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為
π
2
的等差數(shù)列,要得到函數(shù)g(x)=Acosωx的圖象,只需將f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(I)求橢圓C1的方程.
(Ⅱ)過(guò)點(diǎn)S(0,-
1
3
)
的動(dòng)直線l交橢圓C1于A、B兩點(diǎn),試問(wèn):在直角坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過(guò)定點(diǎn)T?若存在求出T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)已知變量x,y滿足約束條件
x+2y-3≤0
x+3y-3≥0
y-1≤0.
,若目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(3,0)處取到最大值,則實(shí)數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)如圖,已知PE切圓O于點(diǎn)E,割線PBA交圓O于A,B兩點(diǎn),∠APE的平分線和AE、BE分別交于點(diǎn)C,D
(Ⅰ)求證:CE=DE;
(Ⅱ)求證:
CA
CE
=
PE
PB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)拋物線y=-4x2的焦點(diǎn)坐標(biāo)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案