若函數(shù)f(x)是R上的奇函數(shù),g(x)是R上的偶函數(shù),且滿足f(x)-g(x)=ex,將f(2)、f(3)、g(0)按從小到大的順序排列為
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性,令-x=x,可求出f(x),g(x)的解析式進(jìn)而得到答案
解答: 解:因?yàn)楹瘮?shù)f(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),
所以f(-x)=-f(x),g(-x)=g(x).
用-x代換x得:f(-x)-g(-x)=e-x,即f(x)+g(x)=-e-x,
又∵f(x)-g(x)=ex
解得:f(x)=
ex-e-x
2
,g(x)=-
ex+e-x
2

故f(x)單調(diào)遞增,又f(0)=0,g(0)=-1,
有g(shù)(0)<f(2)<f(3).
故答案為g(0)<f(2)<f(3).
點(diǎn)評:本題考查函數(shù)的奇偶性性質(zhì)的應(yīng)用.另外還考查了指數(shù)函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-2y+2≥0
x+y≥1
2x+y≤4
,則z=3x-2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C為△ABC的三個(gè)內(nèi)角,其對邊分別為a,b,c,函數(shù)f(x)=2cosxsin(x-A)+sinA在x=
12
處取得最大值.
(Ⅰ)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最小值;
(Ⅱ)若sinB+sinC=
13
3
14
,a=7,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形的周長為10cm,面積為4cm2,則扇形的圓心角α的弧度數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
2
sin(ωx+
π
6
)(ω>0),x∈R的部分圖象如圖所示.設(shè)M,N是圖象上的最高點(diǎn),P是圖象上的最低點(diǎn),若△PMN為等腰直角三角形,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
x+y≤4
y-x≥0
x-1≥0
,表示的平面區(qū)域?yàn)镈,若圓C:(x+1)2+(y+1)2=r2(r>0)經(jīng)過區(qū)域D上的點(diǎn),則r的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,若sinB+sinC=2sinA,3a=5c,則角B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
(1)f(x)=
x-2
+
1-x
有意義;     
(2)函數(shù)是其定義域到值域的映射;
(3)函數(shù)y=2x(x∈N)的圖象是一直線;
(4)函數(shù)y=
x2,x≥0
-x2,x<0
的圖象是拋物線,
其中正確的命題個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非零實(shí)數(shù)a、b,則“a2+b2≥2ab”是“
a
b
+
b
a
≥2”成立的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案