設(shè),求f-1(x+1).
【答案】分析:先由求出函數(shù)f(x),再求出f(x)的反函數(shù)f-1(x),最后求出f-1(x+1).
解答:解:由得函數(shù)f(x)=
令y=
∴x=,
∴x,y互換,得y=
故f-1(x)=,(x≠1),
∴f-1(x+1)=-(x≠0).
點(diǎn)評:本題考查反函數(shù)的求法,屬于基礎(chǔ)題目,要會(huì)求一些簡單函數(shù)的反函數(shù),掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域、值域均為R,f(x)的反函數(shù)為f-1(x),且對任意實(shí)數(shù)x,均有f(x)+f-1(x)<
5
2
x
,定義數(shù)列an:a0=8,a1=10,an=f(an-1),n=1,2,….
(1)求證:an+1+an-1
5
2
an(n=1,2,…)

(2)設(shè)bn=an+1-2an,n=0,1,2,….求證:bn<(-6)(
1
2
)n
(n∈N*);
(3)是否存在常數(shù)A和B,同時(shí)滿足①當(dāng)n=0及n=1時(shí),有an=
A•4n+B
2n
成立;②當(dāng)n=2,3,…時(shí),有an
A•4n+B
2n
成立.如果存在滿足上述條件的實(shí)數(shù)A、B,求出A、B的值;如果不存在,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為奇函數(shù),g(x)為偶函數(shù),且f(x)+g(x)=2log2(1-x)
(1)求f(x)及g(x)的解析式,并指出其單調(diào)性(無需證明).
(2)求使f(x)<0的x取值范圍.
(3)設(shè)h-1(x)是h(x)=log2x的反函數(shù),若存在唯一的x使
1-h-1(x)1+h-1(x)
=m-2x
成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)學(xué)公式,求f-1(x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:海淀區(qū)二模 題型:解答題

設(shè)函數(shù)f(x)的定義域、值域均為R,f(x)的反函數(shù)為f-1(x),且對任意實(shí)數(shù)x,均有f(x)+f-1(x)<
5
2
x
,定義數(shù)列an:a0=8,a1=10,an=f(an-1),n=1,2,….
(1)求證:an+1+an-1
5
2
an(n=1,2,…)

(2)設(shè)bn=an+1-2an,n=0,1,2,….求證:bn<(-6)(
1
2
)n
(n∈N*);
(3)是否存在常數(shù)A和B,同時(shí)滿足①當(dāng)n=0及n=1時(shí),有an=
A•4n+B
2n
成立;②當(dāng)n=2,3,…時(shí),有an
A•4n+B
2n
成立.如果存在滿足上述條件的實(shí)數(shù)A、B,求出A、B的值;如果不存在,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案