精英家教網 > 高中數學 > 題目詳情
設向量
a
=(cos
2
,  sin
2
)
,
b
=(cos
θ
2
,  -sin
θ
2
)
,其中θ∈[0,  
π
3
]

(1)求
a
b
|
a
+
b
|
的最大值和最小值;
(2)若|k
a
+
b
|=
3
|
a
-k
b
|
,求實數k的取值范圍.
(1)
a
b
=(cos
2
,  sin
2
)•(cos
θ
2
,  -sin
θ
2
)=cos
2
cos
θ
2
-sin
2
sin
θ
2
=cos2θ

|
a
+
b
|=
(
a
+
b
)
2
=2cosθ
于是
a•b
|a+b|
=
cos2θ
2cosθ
=
2cos2θ-1
2cosθ
=cosθ-
1
2cosθ

因為θ∈[0,  
π
3
]
,所以cosθ∈[
1
2
,  1]

故當cosθ=
1
2
θ=
π
3
時,
a•b
|a+b|
取得最小值-
1
2
;當cosθ=1即θ=0時,
a•b
|a+b|
取得最大值
1
2


(2)由|ka+b|=
3
|a-kb|
|ka+b|2=3|a-kb|2?k2+1+2kcos2θ=3(1+k2)-6kcos2θ?cos2θ=
k2+1
4k

因為θ∈[0,  
π
3
]
,所以-
1
2
≤cos2θ≤1

不等式-
1
2
k2+1
4k
≤1?
(k-1)2
4k
≥0   
k2-4k+1
4k
≤0

解得2-
3
≤k≤2+
3
或k=-1,
故實數k的取值范圍是[2-
3
,  2+
3
]∪{-1}
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設向量
a
=(cos
2
,  sin
2
)
,
b
=(cos
θ
2
,  -sin
θ
2
)
,其中θ∈[0,  
π
3
]

(1)求
a
b
|
a
+
b
|
的最大值和最小值;
(2)若|k
a
+
b
|=
3
|
a
-k
b
|
,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案