已知函數(shù)f(x)=
lnx
x

(1)求f(x)在點(1,0)處的切線方程;
(2)求f(x)在[1,e2]上的最值.
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值,利用導數(shù)研究曲線上某點切線方程
專題:綜合題,導數(shù)的綜合應用
分析:(1)求導數(shù),可得切線的斜率,從而可得f(x)在點(1,0)處的切線方程;
(2)確定f(x)在[1,e2]上的單調性,即可最值.
解答: 解:(1)∵f(x)=
lnx
x
,
∴f′(x)=
1-lnx
x2
,
∴f′(1)=1,
∴f(x)在點(1,0)處的切線方程為y=x-1;
(2)∵函數(shù)在(1,e)上單調遞增,在(1,e2)上單調遞減,
∴x=e時,函數(shù)取得最大值
1
e
;
∴x=1時,f(1)=0,f(e2)=
2
e2

∴f(x)在[1,e2]上的最小值為0.
點評:本題考查利用導數(shù)求閉區(qū)間上函數(shù)的最值,考查利用導數(shù)研究曲線上某點切線方程,正確求導是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題中不正確的是( 。
A、存在這樣的α和β的值,使得cos(α+β)=cosαcosβ+sinαsinβ
B、不存在無窮多個α和β的值,使得cos(α+β)=cosαcosβ+sinαsinβ
C、對于任意的α和β,都有cos(α+β)=cosαcosβ-sinαsinβ
D、不存在這樣的α和β值,使得cos(α+β)≠cosαcosβ-sinαsinβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)過點A(2,1),離心率e=
3
2

(1)求橢圓方程;
(2)過直線y=2上的點P作橢圓的兩條切線,切點分別為B,C
①求證:直線BC過定點;
②求△OBC面積的最大值;
參考公式:過橢圓
x2
a2
+
y2
b2
=1上點(x0,y0)的切線方程為
x0x
a2
+
y0y
b2
=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
2
2
,右頂點為拋物線y2=8x的焦點.
(1)求橢圓C的方程;
(2)若過點M(1,0)任作一條直線l交橢圓C于A、B兩點,Q(4,0),連接QA,QB,求證:∠AQM=∠BQM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2
3
ax3+(a-1)bx2-2x+1,a∈R.
(1)當b=1時,討論函數(shù)y=f(x)的單調區(qū)間;
(2)若a=2且函數(shù)y=f(x)在(1,2)上存在增區(qū)間,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=mx-
m-1
x
-lnx,m∈R,函數(shù)g(x)=
1
cosθ•x
+lnx在[1,+∞)上為增函數(shù),且θ∈[0,
π
2
).
(1)求θ的取值范圍;c
(2)若h(x)=f(x)-g(x)在[1,+∞)上為單調函數(shù),求m的取值范圍;
(3)若在[1,e]上至少存在一個x0,使得h(x0)>
2e
x0
成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知圓O:x2+y2=1與x軸交于A、B兩點,與y軸的正半軸交于點C,M是圓O上任意點(除去圓O與兩坐標軸的交點).直線AM與直線BC交于點P,直線CM與x軸交于點N,設直線PM、PN的斜率分別為m、n.
(Ⅰ)求直線BC的方程;
(Ⅱ)求點P、M的坐標(用m表示);
(Ⅲ)是否存在一個實數(shù)λ,使得m+λn為定值,若存在求出λ,并求出這個定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+ax-
1
4
a-
1
2
,
(1)若函數(shù)f(x)的值域為(-∞,0],求實數(shù)a的值;
(2)當x∈[0,1]時,函數(shù)f(x)的最大值為2,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2x-3
(1)指出圖象開口方向、對稱軸方程、頂點坐標;
(2)畫出函數(shù)圖象,并說明圖象是由f(x)=x2經(jīng)過怎樣的平移得到;
(3)求f(2)、f(
1
x
);
(4)判斷函數(shù)f(x)在(-∞,-1)上的單調性,并加以證明.

查看答案和解析>>

同步練習冊答案