對任意實數(shù)x,若不等式|x+1|-|x-2|>k恒成立,則k的取值范圍是________.

k<-3
分析:|x+1|-|x-2|表示數(shù)軸上的x對應(yīng)點到-1對應(yīng)點的距離減去它到2對應(yīng)點的距離,其最小值為-3,故有 k<-3,由此求得k的取值范圍.
解答:對任意實數(shù)x,若不等式|x+1|-|x-2|>k恒成立,而|x+1|-|x-2|表示數(shù)軸上的x對應(yīng)點到-1對應(yīng)點的距離減去它到2對應(yīng)點的距離,
其最小值為-3,故有 k<-3,
故答案為 k<-3.
點評:本題主要考查絕對值的意義,絕對值不等式的解法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數(shù)x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數(shù)m的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m∈R,命題p:設(shè)x1和x2是方程x2-ax-3=0的兩個實根,不等m2-2m-4≥|x1-x2|對任意實數(shù)a∈[-2,2]恒成立命題q:“4x+m<0”是“x2-x-2>0”的充分不必要條件.求使p且¬q為真命題的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數(shù)x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數(shù)m的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數(shù)x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數(shù)m的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省武威五中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數(shù)x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數(shù)m的取值范圍..

查看答案和解析>>

同步練習(xí)冊答案