(本小題滿分12分)

甲,乙,丙三位學生獨立地解同一道題,甲做對的概率為,乙,丙做對的概率分別為, (),且三位學生是否做對相互獨立.記為這三位學生中做對該題的人數(shù),其分布列為:

0

1

2

3

(1) 求至少有一位學生做對該題的概率;

(2) 求,的值;

(3) 求的數(shù)學期望.

 

【答案】

(1) (2)  ,(3)

【解析】

試題分析:設(shè)“甲做對”為事件,“乙做對”為事件,“丙做對”為事件,由題意知,

.  

(1)由于事件“至少有一位學生做對該題”與事件“”是對立的,

所以至少有一位學生做對該題的概率是.

(2)由題意知,            ,  

整理得 ,.

,解得,.   

(3)由題意知

,

=,

的數(shù)學期望為=.

考點:相互獨立事件概率及離散型隨機變量分布列期望

點評:在求解關(guān)于分布列題目的時候,首要分析清楚隨機變量取各值時對應(yīng)的事件,再代入相應(yīng)的計算公式求解,本題還考查數(shù)據(jù)處理、推理論證、運算求解能力和應(yīng)用意識,以及或然與必然的數(shù)學思想

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案