已知球的表面積為144π,則球的體積為( 。
A、48πB、192π
C、162πD、288π
考點:球的體積和表面積
專題:計算題,空間位置關系與距離
分析:通過球的表面積,求出球的半徑,然后利用確定體積公式求出球的體積.
解答: 解:因為球的表面積為144π,所以,4πR2=144π,∴R=6,
所以球的體積為:
4
3
π×63
=288π.
故選:D.
點評:本題是基礎題,考查球的表面積與體積的計算,注意公式的正確應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sin2x圖象向上平移一個單位長度,再向左平移
π
4
個單位長度,則所得圖象對應的函數(shù)解析式是( 。
A、y=2cos2x
B、y=2sin2x
C、y=1+sin(2x-
π
4
D、y=1+sin(2x+
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
log2(1-x)
2x-
1
2
的定義域是( 。
A、(-∞,-1)
B、[-1,1]
C、(-1,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知隨機變量X-N(2,a),若P(x<a)=0.32,則P(x>4-a)=(  )
A、0.32B、0.36
C、0.64D、0.68

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={0,1,2},B={2,3,4},如圖陰影部分所表示的集合為( 。
A、{2}
B、{0,1}
C、{3,4}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線
x2
4
-
y2
k
=1的左焦點,做垂直于實軸的直線,與雙曲線交于A,B兩點,則|AB|的長為(  )
A、
k2
2
B、k2
C、
k
2
D、k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,錯誤的是(  )
A、若a>b,c<d,則a-c>b-d
B、若a>b>0,c<d<0,則ac<bd
C、若a>b,則
3a
3b
D、若a>b,則
1
a2
1
b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓G:
x2
4
+y2=1.過x軸上的動點P(m,0)作圓x2+y2=1的切線l交橢圓G于A,B兩點.
(Ⅰ)求橢圓G上的點到直線x-2y+1=0的最大距離;
(Ⅱ)①當實數(shù)m=1時,求A,B兩點坐標;
②將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ex
2
-
1
ex
-ax(a∈R).
(1)當a=
3
2
時,求函數(shù)f(x)的單調區(qū)間;
(2)若函數(shù)f(x)在[-1,1]上為單調函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案