在平行六面體ABCDA1B1C1D1中,AB = AD = AA1= 1,∠A1AB =∠A1AD =∠DAB = 60°.

(1)求對(duì)角線AC­1的長(zhǎng);

(2)求異面直線AC1B1C的夾角.

解:(1)設(shè)= a,= b= c,則|a| = |b| = |c| = 1,a,b=b,c=a,c= 60°,(a + b + c)2 = a2 + b2 + c2 + 2a?b + 2b?c + 2a?c = 6,∴.

(2)∵b c,∴= (a + b + c)?(b c) = a?b + b2 + b?ca?cb?cc2 = 0.

,∴異面直線AC1B1C的夾角為90°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行六面體ABCD-A1B1C1D1中,O為AC與BD的交點(diǎn),若
A1B1
=
a
A1D1
=
b
,
AA1
=
c
,則向量
B1O
等于( 。
精英家教網(wǎng)
A、
1
2
a
+
1
2
b
+
c
B、
1
2
a
-
1
2
b
+
c
C、-
1
2
a
+
1
2
b
+
c
D、-
1
2
a
-
1
2
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點(diǎn).若
AB
=
a
,
AD
=
b
,
AA1
=
c
,則下列向量中與
BM
相等的向量是( 。
A、-
1
2
a
+
1
2
b
+
c
B、
1
2
a
+
1
2
b
+
c
C、-
1
2
a
-
1
2
b
+
c
D、
1
2
a-
1
2
b+c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行六面體ABCD-A1B1C1D1中,向量
D1A
、
D1C
A1C1
是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平行六面體ABCD-A1B1C1D1中,AB=AD=AA1=1,且∠BAD=∠BAA1=∠DAA1=60°,求AC1的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行六面體ABCD-A1B1C1D1中,
AC
=
a
,
BD
=
b
,
AC1
=
c
,試用
a
、
b
c
表示
BD1
=
b
+
c
-
a
b
+
c
-
a

查看答案和解析>>

同步練習(xí)冊(cè)答案