執(zhí)行如圖所示的程序框圖,如果輸入a=2,那么輸出的結(jié)果為( 。
A、2B、3C、4D、5
考點:程序框圖
專題:算法和程序框圖
分析:根據(jù)框圖的流程依次計算程序運(yùn)行的結(jié)果,直到不滿足條件P≥Q,確定輸出n的值.
解答: 解:由程序框圖知:第一次循環(huán)P=1+2=3,Q=3×0+1=1,n=1;
第二次循環(huán)P=3+2=5,Q=3×1+1=4,n=2;
第三次循環(huán)P=5+2=7,Q=3×4+1=13,n=3.
不滿足條件P≥Q,跳出循環(huán)體,輸出n=3.
故選:B.
點評:本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次計算程序運(yùn)行的結(jié)果是解答此類問題的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=3,BC=4,∠ABC=120°,若把△ABC繞直線AB旋轉(zhuǎn)一周,則所形成的幾何體的體積是(  )
A、11πB、12π
C、13πD、14π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(1-i)2的虛部是( 。
A、-2iB、2C、-2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的四個函數(shù)y=x2+1,y=3x,y=|x+1|,y=sinx中,偶函數(shù)的個數(shù)是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x+2)在點(-1,0)處的切線方程為(  )
A、x+y+1=0
B、x-y+1=0
C、x-2y+1=0
D、x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:復(fù)數(shù)z=
1+i
i
在復(fù)平面內(nèi)所對應(yīng)的點位于第四象限;命題q:?x>0,x=cosx,則下列命題中為真命題的是(  )
A、(¬p)∧(¬q)
B、(¬p)∧q
C、p∧(¬q)
D、p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

王師傅駕車去超市,途中要經(jīng)過4個路口,假設(shè)在各路口遇到紅燈的概率都是
1
3
,遇到紅燈時,在各路口停留的時間依次為30秒,30秒,60秒,30秒
(Ⅰ)求王師傅在第3個路口首次遇到紅燈的概率;
(Ⅱ)求王師傅在途中因遇到紅燈停留的總時間X(秒)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實數(shù)x0與正數(shù)a,使x0+a,x0-a均在函數(shù)f(x)的定義域內(nèi),且f(x0+a)=f(x0-a)成立,則稱“函數(shù)f(x)在x=x0處存在長度為a的對稱點”.
(1)設(shè)f(x)=x3-3x2+2x-1,問是否存在正數(shù)a,使“函數(shù)f(x)在x=1處存在長度為a的對稱點”?試說明理由.
(2)設(shè)g(x)=x+
b
x
(x>0),若對于任意x0∈(3,4),總存在正數(shù)a,使得“函數(shù)g(x)在x=x0處存在長度為a的對稱點”,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為d,Sn是{an}中從第2n-1項開始的連續(xù)2n-1項的和,即:
S1=a1
S2=a2+a3,
S3=a4+a5+a6+a7

Sn=a 2n-1+a 2n-1+1+…+a 2n-1,

(1)當(dāng)a1=3,d=2時,求S4
(2)若S1,S2,S3成等比數(shù)列,問:數(shù)列{Sn}是否成等比數(shù)列?請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案