已知焦點在y軸上的橢圓C1=1經(jīng)過A(1,0)點,且離心率為
(I)求橢圓C1的方程;
(Ⅱ)過拋物線C2:y=x2+h(h∈R)上P點的切線與橢圓C1交于兩點M、N,記線段MN與PA的中點分別為G、H,當GH與y軸平行時,求h的最小值.
【答案】分析:(Ⅰ)利用橢圓C1=1經(jīng)過A(1,0)點,且離心率為,建立方程,即可求得橢圓C1的方程;
(Ⅱ)設P(t,t2+h),利用導數(shù)可得MN的方程為 y=2tx-t2+h,代入橢圓方程,消元可得 4(1+t2)x2-4t(t2-h)x+(t2-h)2-4=0,從而△=16[-t4+2(h+2)t2-h2+4]>0;設M(x1,y1),N(x2,y2),利用線段MN與PA的中點分別為G、H,GH與y軸平行,可得MN中點橫坐標與線段PA的中點橫坐標相等,可建立等式,從而可得函數(shù)關系式,再利用基本不等式,即可求得結論.
解答:解:(Ⅰ)由題意可得,解得a=2,b=1,(2分)
所以橢圓C1的方程為 .(4分)
(Ⅱ)設P(t,t2+h),由 y′=2x,
拋物線C2在點P處的切線的斜率為 k=y′|x=t=2t,
所以MN的方程為 y=2tx-t2+h,(5分)
代入橢圓方程得 4x2+(2tx-t2+h)2-4=0,
化簡得 4(1+t2)x2-4t(t2-h)x+(t2-h)2-4=0
又MN與橢圓C1有兩個交點,故△=16[-t4+2(h+2)t2-h2+4]>0①
設M(x1,y1),N(x2,y2),MN中點橫坐標為x,則,(8分)
設線段PA的中點橫坐標為
由已知得x=x3即 ,②(10分)
顯然t≠0,
當t>0時,,當且僅當t=1時取得等號,此時h≤-3不符合①式,故舍去;
當t<0時,,當且僅當t=-1時取得等號,此時h≥1,滿足①式.
綜上,h的最小值為1.(12分)
點評:本題考查橢圓的標準方程,考查橢圓的幾何性質(zhì),考查函數(shù)關系式的建立,考查利用基本不等式求函數(shù)的最值,解題的關鍵是確定函數(shù)關系式,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關于點(
k
2
,0)
對稱;⑤函數(shù)f(m)=3
3
時AM過橢圓的右焦點.其中所有的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆重慶市“名校聯(lián)盟”高二第一次聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

如圖,已知橢圓C的中心在原點O,焦點在軸上,長軸長是短軸

長的2倍,且經(jīng)過點M. 平行于OM的直線軸上的截距為并交橢

圓C于A、B兩個不同點.

(1)求橢圓C的標準方程;

(2)求的取值范圍;

y

 
(3)求證:直線MA、MB與軸始終圍成一個等腰三角形.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013年湖南省懷化市高考數(shù)學二模試卷(理科)(解析版) 題型:選擇題

如圖展示了一個由區(qū)間(0,k)(其中k為一正實數(shù))到實數(shù)集R上的映射過程:區(qū)間(0,k)中的實數(shù)m對應線段AB上的點M,如圖1;將線段AB圍成一個離心率為的橢圓,使兩端點A、B恰好重合于橢圓的一個短軸端點,如圖2;再將這個橢圓放在平面直角坐標系中,使其中心在坐標原點,長軸在x軸上,已知此時點A的坐標為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點N(n,-2),則與實數(shù)m對應的實數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關于點對稱;⑤函數(shù)時AM過橢圓的右焦點.其中所有的真命題是( )
A.①③⑤
B.②③④
C.②③⑤
D.③④⑤

查看答案和解析>>

同步練習冊答案