(本小題滿分15分)已知函數(shù),
(1)若,且的取值范圍
(2)當(dāng)時(shí),恒成立,且的取值范圍
(1) (2)
解析試題分析:(1),
即 , ……3分
因 當(dāng)且僅當(dāng)時(shí)等號(hào)成立 ……4分
即,所以 ……7分
(2)當(dāng)時(shí),,
且 ,
即滿足不等式組的點(diǎn)構(gòu)成圖中的陰影部分, ……10分
由圖可知,經(jīng)過與的直線的斜率的取值范圍是,
所以的取值范圍是. ……15分
考點(diǎn):本小題主要考查利用基本不等式求最值、利用線性規(guī)劃知識(shí)求最值、兩點(diǎn)間斜率公式的應(yīng)用等知識(shí),
考查學(xué)生綜合運(yùn)用知識(shí)解決問題的能力.
點(diǎn)評(píng):利用線性規(guī)劃知識(shí)可以解決非線性目標(biāo)函數(shù)的最值問題,一般要轉(zhuǎn)化成求兩點(diǎn)間連線的斜率、兩點(diǎn)
間的距離等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(),
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)已知,:關(guān)于的不等式對(duì)任意恒成立;
:函數(shù)是增函數(shù).若“或”為真,“且”為假,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
如圖,在半徑為的圓形(為圓心)鋁皮上截取一塊矩形材料,其中點(diǎn)在圓上,點(diǎn)、在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長,圓柱的體積為.
(1)寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時(shí),才能使做出的圓柱形罐子體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)判斷函數(shù)是否是有界函數(shù),請(qǐng)寫出詳細(xì)判斷過程;
(2)試證明:設(shè),若在上分別以為上界,
求證:函數(shù)在上以為上界;
(3)若函數(shù)在上是以3為上界的有界函數(shù),
求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=x2+(2+lga)x+lgb,f(-1)=-2.
(1)求a與b的關(guān)系式;
(2)若f(x)≥2x恒成立,求a、b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)
(1)求值: ;
(2)求值: (lg2)2+lg5·lg20+ lg100;
(3)已知. 求a、b,并用表示.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com