已知函數(shù)

(Ⅰ)若函數(shù)的圖象關(guān)于直線對(duì)稱,求的最小值;

(Ⅱ)若存在,使成立,求實(shí)數(shù)的取值范圍.

 

【答案】

解: (Ⅰ)   ……………………………3分

             由題設(shè),,即  ……………………5分

             ,則當(dāng)時(shí),         ………………………………6分

    (Ⅱ)當(dāng)時(shí),,  ………………………………7分

                  ………………………………………………8分

               …………………………………………………………9分

              存在,使成立

          ,     …………………………………………………………10分

          即                 

          故的取值范圍是       ………………………………12分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4ax+2a+6(a∈R).
(1)若函數(shù)的值域?yàn)閇0,+∞),求a的值;
(2)若函數(shù)值為非負(fù)數(shù),求函數(shù)f(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
2
x
+alnx(x>0)
,
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式數(shù)學(xué)公式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省韶關(guān)市田家炳中學(xué)、乳源高級(jí)中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年廣東省華南師大附中高三綜合測(cè)試數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題

已知函數(shù),
(Ⅰ) 若f(x)在[1,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)若定義在區(qū)間D上的函數(shù)y=f(x)對(duì)于區(qū)間D上的任意兩個(gè)值x1、x2總有以下不等式成立,則稱函數(shù)y=f(x)為區(qū)間D上的“凹函 數(shù)”.試證當(dāng)a≤0時(shí),f(x)為“凹函數(shù)”.

查看答案和解析>>

同步練習(xí)冊(cè)答案