長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5,P是棱BC上一動(dòng)點(diǎn),則AP+PC1的最小值為 ________.


分析:長(zhǎng)方體ABCD-A1B1C1D1中,P是棱BC上一動(dòng)點(diǎn),求AP+PC1的最小值可將以BC為相交棱的兩個(gè)側(cè)面展開成一個(gè)平面,從平面上可以看出當(dāng)三點(diǎn)A、P、C1在一條直線上時(shí),AP+PC1的值最小,此時(shí)線段恰好是直角三角形的斜邊.由勾股定理求值即可.
解答:可將長(zhǎng)方體的側(cè)面沿棱B1C1展開成一個(gè)平面,則AP+PC1的最小值即為線段AC1的值,
又 AB=3,BC=4,AA1=5,故直角三角形AB1C1中兩條直角邊的長(zhǎng)度分別為B1C1=4,AB1=8,
由公股定理得AC1===,
即AP+PC1的最小值為,
故答案為
點(diǎn)評(píng):本題考點(diǎn)是點(diǎn)、線、面間的距離計(jì)算,考查對(duì)長(zhǎng)方體結(jié)構(gòu)特征的了解,本題把求拆線長(zhǎng)度的問題轉(zhuǎn)變?yōu)榍髢牲c(diǎn)間距離的問題,將一個(gè)立體幾何中求長(zhǎng)度的問題轉(zhuǎn)化為平面中兩點(diǎn)線段的長(zhǎng)度體現(xiàn)了數(shù)學(xué)中化歸的思想,立體幾何中的問題有不少都是借助化歸思想將空間中的問題轉(zhuǎn)化到平面中解決,大大降低了解題的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,過A1、C1、B三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體ABCD-A1C1D1,且這個(gè)幾何體的體積為10.
(1)求棱A1A的長(zhǎng);
(2)求點(diǎn)D到平面A1BC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=A1A=a,BC=
2
a,M是AD中點(diǎn),N是B1C1中點(diǎn).
(1)求證:A1、M、C、N四點(diǎn)共面;
(2)求證:BD1⊥MCNA1;
(3)求證:平面A1MNC⊥平面A1BD1
(4)求A1B與平面A1MCN所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,BC=4,AA1=5 則三棱錐A1-ABC的體積為( 。
A、10B、20C、30D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知多面體ABCD-A1B1C1D1,它是由一個(gè)長(zhǎng)方體ABCD-A'B'C'D'切割而成,這個(gè)長(zhǎng)方體的高為b,底面是邊長(zhǎng)為a的正方形,其中頂點(diǎn)A1,B1,C1,D1均為原長(zhǎng)方體上底面A'B'C'D'各邊的中點(diǎn).
(1)若多面體面對(duì)角線AC,BD交于點(diǎn)O,E為線段AA1的中點(diǎn),求證:OE∥平面A1C1C;
(2)若a=4,b=2,求該多面體的體積;
(3)當(dāng)a,b滿足什么條件時(shí)AD1⊥DB1,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(1)求證:A1E⊥平面ADE;
(2)求三棱錐A1-ADE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案