【題目】設(shè)各項均為正數(shù)的數(shù)列的前項和為,已知,且對一切都成立.

(1)當(dāng).

①求數(shù)列的通項公式;

②若,求數(shù)列的前項的和;

(2)是否存在實數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.

【答案】(1)①;②;(2)存在,0.

【解析】

(1) 時,可得到,即,然后用累乘法可得,進而可得出數(shù)列是首項為1,公比為2的等比數(shù)列,,②用錯位相減法算出即可

(2)先由算出,然后再證明即可

(1)①若,因為

,.

又∵,∴,

化簡,得.

∴當(dāng)時,.

②-①,得,∴.

∵當(dāng)時,,∴時上式也成立,

∴數(shù)列是首項為1,公比為2的等比數(shù)列,.

②因為,∴

所以

所以

將兩式相減得:

所以

(2)令,得.,得.

要使數(shù)列是等差數(shù)列,必須有,解得.

當(dāng)時,,且.

當(dāng)時,,

整理,得,

從而

化簡,得,所以.

綜上所述,,

所以時,數(shù)列是等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,,的中點,且.

(1)求證:平面;(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.

(1) 求拋物線的方程;

(2) 當(dāng)點為直線上的定點時,求直線的方程;

(3) 當(dāng)點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項和為,已知,,.

(1)證明:為等比數(shù)列,求出的通項公式;

(2)若,求的前n項和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點為,離心率為.

1)求的標(biāo)準(zhǔn)方程;

2)若動點外一點,且的兩條切線相互垂直,求的軌跡的方程;

3)設(shè)的另一個焦點為,自直線上任意一點引(2)所求軌跡的一條切線,切點為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在的函數(shù)的導(dǎo)函數(shù)為.

證明:(1)在區(qū)間存在唯一極小值點;

2有且僅有2個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】法國有個名人叫做布萊爾·帕斯卡,他認識兩個賭徒,這兩個賭徒向他提出一個問題,他們說,他們下賭金之后,約定誰先贏滿5局,誰就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時間很晚了,他們都不想再賭下去了.假設(shè)每局兩賭徒輸贏的概率各占,每局輸贏相互獨立,那么這700法郎如何分配比較合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)有關(guān)資料預(yù)測,某市下月1—14日的空氣質(zhì)量指數(shù)趨勢如下圖所示.,根據(jù)已知折線圖,解答下面的問題:

1)求污染指數(shù)的眾數(shù)及前五天污染指數(shù)的平均值;(保留整數(shù))

2)為了更好發(fā)揮空氣質(zhì)量監(jiān)測服務(wù)人民的目的,監(jiān)測部門在發(fā)布空氣質(zhì)量指數(shù)的同時,也給出了出行建議,比如空氣污染指數(shù)大于150時需要戴口罩,超過200時建議減少外出活動等等.如果某人事先沒有注意到空氣質(zhì)量預(yù)報,而在1—12號這12天中隨機選定一天,欲在接下來的兩天中(不含選定當(dāng)天)進行外出活動.求其外出活動的兩天期間.

①恰好都遭遇重度及以上污染天氣的概率;

②至少有一天能避開重度及以上污染天氣的概率.

附:空氣質(zhì)量等級參考表:

等級

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

查看答案和解析>>

同步練習(xí)冊答案