三棱臺(tái)-ABC上底面面積為4,下底面面積為9,過(guò)A、、C及C、、作兩個(gè)截面,那么截得的三棱錐的體積之比正確的是

[  ]

A.1∶1∶1

B.4∶6∶9

C.2∶∶3

D.1∶2∶3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn),截面DEF∥底面ABC,且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)
(1)證明:P-ABC為正四面體;
(2)若PD=PA=
12
求二面角D-BC-A的大;(結(jié)果用反三角函數(shù)值表示)
(3)設(shè)棱臺(tái)DEF-ABC的體積為V,是否存在體積為V且各棱長(zhǎng)均相等的直平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱臺(tái)ABC-A1B1C1中,上底面ABC的面積為a2,下底面面積為b2(b>a>0),作截面AB1C1,設(shè)直線BC與平面AB1C1的距離等于這個(gè)三棱臺(tái)的高,那么截面AB1C1的面積是( 。
精英家教網(wǎng)
A、
1
3
ab
B、ab
C、3ab
D、
1
3
(a+b)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(04年上海卷)(16分)

如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)     證明:P-ABC為正四面體;

(2)     若PD=PA, 求二面角D-BC-A的大。(結(jié)果用反三角函數(shù)值表示)

(3)     設(shè)棱臺(tái)DEF-ABC的體積為V, 是否存在體積為V且各棱長(zhǎng)均相等的直

平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和? 若存在,請(qǐng)具體構(gòu)造

出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東實(shí)驗(yàn)中學(xué)高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)

如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)求證:P-ABC為正四面體;

(2)棱PA上是否存在一點(diǎn)M,使得BM與面ABC所成的角為45°?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由。

(3)設(shè)棱臺(tái)DEF-ABC的體積為V=, 是否存在體積為V且各棱長(zhǎng)均相等的平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案