17.y=-2sinx+1,x∈[-$\frac{π}{2}$,π]的值域?yàn)閇-1,3],當(dāng)y取最大值時(shí),x=-$\frac{π}{2}$;當(dāng)y取最小值時(shí),x=$\frac{π}{2}$.

分析 根據(jù)正弦函數(shù)的圖象和性質(zhì),結(jié)合給定的自變量的取值范圍,可得函數(shù)的值域,及最大值點(diǎn)和最小值點(diǎn).

解答 解:∵x∈[-$\frac{π}{2}$,π]時(shí),sinx∈[-1,1],
∴y=-2sinx+1∈[-1,3],
即y=-2sinx+1,x∈[-$\frac{π}{2}$,π]的值域?yàn)閇-1,3],
當(dāng)y取最大值時(shí),sinx=-1,x=-$\frac{π}{2}$,
當(dāng)y取最小值時(shí),sinx=1,x=$\frac{π}{2}$,
故答案為:[-1,3],-$\frac{π}{2}$,$\frac{π}{2}$

點(diǎn)評 本題考查的知識(shí)點(diǎn)是正弦函數(shù)的圖象,熟練掌握函數(shù)的最值,振幅的關(guān)系是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等比數(shù)列{an},滿足a1+a2+a3+a4+a5=2,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{4}}+\frac{1}{{a}_{5}}$=$\frac{1}{2}$,則a3=( 。
A.-2B.2C.±2D.±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,Q為橢圓C的左頂點(diǎn),斜率為k(k≠0)的直線l與橢圓C交于A、B兩點(diǎn),當(dāng)∠AQB=$\frac{π}{2}$時(shí),直線1過x軸上的定點(diǎn)N,則點(diǎn)N的坐標(biāo)為N(-$\frac{2}{5}$,0)或($-\frac{6}{5},0$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2x2和函數(shù)g(x)=$\frac{1}{2x}$,
(1)求f(1)的值;
(2)求g(1)的值;
(3)求f(1)•g(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.y=2sin($\frac{x}{2}$+$\frac{π}{3}$)的值域?yàn)閇-2,2],當(dāng)y取最大值時(shí),x=4kπ+$\frac{π}{3}$(k∈Z);當(dāng)y取最小值時(shí),x=4kπ-$\frac{5π}{3}$(k∈Z),周期為4π,單調(diào)遞增區(qū)間為[4kπ-$\frac{5π}{3}$,4kπ+$\frac{π}{3}$](k∈Z);單調(diào)遞減區(qū)間為[4kπ+$\frac{π}{3}$,4kπ+$\frac{7π}{3}$](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.|x-4|<2的解集是{x|2<x<6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}中,a1=5,a2=2,且2(an+an+2)=5an+1,則數(shù)列{an}的前n項(xiàng)之和為11-$\frac{1}{3}$(25-n+2n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知在△ABC中,tan$\frac{A}{2}$=$\frac{1}{2}$,tan$\frac{B}{2}$=$\frac{1}{3}$,△ABC的形狀為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.y=x${e}^{\frac{1}{{x}^{2}}}$的鉛直漸近線是x=0.

查看答案和解析>>

同步練習(xí)冊答案