已知向量
m
=(1,2),
n
=(2,1),則(
m
n
)(
m
-2
n
)等于( 。
A、(-12,0)B、4
C、(-3,0)D、-12
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:利用向量的坐標運算和坐標運算即可得出.
解答: 解:∵向量
m
=(1,2),
n
=(2,1),
m
n
=1×2+2×1=4,
m
-2
n
=(1,2)-2(2,1)=(-3,0).
∴(
m
n
)(
m
-2
n
)=4(-3,0)=(-12,0).
故選:A.
點評:本題考查了向量的坐標運算和坐標運算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sin2α=
24
25
,0<α<
π
2
,則
2
cos(
π
4
-α)的值=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個空間幾何體的三視圖如圖所示,且這個空間幾何體的所有頂點都在一個球面上,則這個球的體積是(  )
A、
28π
3
B、
28
21
π
27
C、
7
21
π
9
D、
7
21
π
27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆骰子連續(xù)拋擲三次,已知它落地時向上的點數(shù)恰好依次成等差數(shù)列,那么這三次拋擲向上的點數(shù)之和為12的概率為( 。
A、
5
18
B、
1
9
C、
3
18
D、
1
72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

log212-log23=( 。
A、-2
B、0
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,矩形ABCD和矩形ABEF中,矩形ABEF可沿AB任意翻折,AF=AD,M、N分別在AE、DB上運動,當F、A、D不共線,M、N不與A、D重合,且AM=DN時,有(  )
A、MN∥平面FAD
B、MN與平面FAD相交
C、MN⊥平面FAD
D、MN與平面FAD可能平行,也可能相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x≤2
y≤2
x+y≥3
,則目標函數(shù)z=
x+2y
x
的取值范圍是( 。
A、[2,5]
B、[1,5]
C、[
1
2
,2]
D、[2,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2在點(3,f(3))處的切線方程為12x+2y-27=0.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若方程f(x)=-
1
2
x2+m
有三個不同的解,求實數(shù)m的取值范圍;
(Ⅲ)若不等式f(x)-
3
2
x2+(k+1)x≥0(k∈R)
對于x∈(-∞,0)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an+n2-1,數(shù)列{bn}滿足3n•bn+1=(n+1)an+1-nan,且b1=3.
(Ⅰ)求an,bn;
(Ⅱ)設Tn為數(shù)列{bn}的前n項和,求Tn,并求滿足Tn<7時n的最大值.

查看答案和解析>>

同步練習冊答案