若函數(shù)f(x)=
2x(x<3)
3x-m(x≥3)
,且f(f(2))>7,則實(shí)數(shù)m的取值范圍為
m<5
m<5
分析:先計(jì)算得出f(2)=4,由已知,將f(f(2))>7可化為12-m>7.
解答:解:f(2)=4,f(f(2))>7
即為f(4)>7,即12-m>7,解得m<5
故答案為:m<5
點(diǎn)評(píng):本題實(shí)質(zhì)上考查分段函數(shù)求函數(shù)值,按照由內(nèi)到外的順序逐步求解.要確定好自變量的取值或范圍,再代入相應(yīng)的解析式求得對(duì)應(yīng)的函數(shù)值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
-2x+3(x≤2)
logax(x>2)
在R上是減函數(shù),則實(shí)數(shù)a的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m∈N,若函數(shù)f(x)=2x-m
10-x
-m+10
存在整數(shù)零點(diǎn),則m的取值集合為
{0,3,14,30}
{0,3,14,30}
,此時(shí)x的取值集合為
{-5,1,9,10}
{-5,1,9,10}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
2x,                 x>0
-x2-2x-2,   x≤0
,
(Ⅰ)在給定的平面直角坐標(biāo)系中畫出函數(shù)f(x)圖象;
(Ⅱ)利用圖象寫出函數(shù)f(x)的值域、單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
2x,x<0
-2-x,x>0
,則函數(shù)y=f(f(x))的值域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案