設(shè)S和T分別表示(1+2x)n和(1+3x)n展開(kāi)式中各項(xiàng)系數(shù)之和,則=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,∠C=
π
2
.設(shè)∠CBA=θ,BC=a,它的內(nèi)接正方形DEFG的一邊EF在斜邊AB上,D、G分別在AC、BC上.假設(shè)△ABC的面積為S,正方形DEFG的面積為T.
(1)用a,θ表示△ABC的面積S和正方形DEFG的面積T;
(2)設(shè)f(θ)=
T
S
,試求f(θ)的最大值P,并判斷此時(shí)△ABC的形狀;
(3)通過(guò)對(duì)此題的解答,我們是否可以作如下推斷:若需要從一塊直角三角形的材料上裁剪一整塊正方形(不得拼接),則這塊材料的最大利用率要視該直角三角形的具體形狀而定,但最大利用率不會(huì)超過(guò)第(2)小題中的結(jié)論P(yáng).請(qǐng)分析此推斷是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在第十六屆廣州亞運(yùn)會(huì)上,某項(xiàng)目的比賽規(guī)則為:由兩人(記為甲和乙)進(jìn)行比賽,每局勝者得1分,負(fù)者得0分(無(wú)平局),比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p>0.5),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
59

(Ⅰ)求實(shí)數(shù)p的值;
(Ⅱ)如圖為統(tǒng)計(jì)比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請(qǐng)問(wèn)在第一、第二兩個(gè)判斷框中應(yīng)分別填寫(xiě)什么條件;
(Ⅲ)設(shè)ζ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ζ的分布列和數(shù)學(xué)期望Eζ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=1-ax2(a>0,x>0),該函數(shù)圖象在點(diǎn)P(x0,1-ax02) 處的切線為l,設(shè)切線l 分別交x 軸和y 軸于兩點(diǎn)M和N.
(1)將△MON (O 為坐標(biāo)原點(diǎn))的面積S 表示為x0 的函數(shù)S(x0);
(2)若在x0=1處,S(x0)取得最小值,求此時(shí)a的值及S(x0)的最小值;
(3)若記M點(diǎn)的坐標(biāo)為M(m,0),函數(shù)y=f(x) 的圖象與x軸交于點(diǎn)T(t,0),則m與t的大小關(guān)系如何?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•遼寧一模)甲乙兩人進(jìn)行乒乓球?qū)官,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一個(gè)比對(duì)方多2分或打滿6局時(shí)停止.設(shè)甲在每局中獲勝的概率為P(P>
1
2
)
,且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為
5
9
.若圖為統(tǒng)計(jì)這次比賽的局?jǐn)?shù)n和甲,乙的總得分?jǐn)?shù)S,T的程序框圖.其中如果甲獲勝則輸入a=1,b=0.如果乙獲勝,則輸入a=0,b=1.
(1)在圖中,第一,第二兩個(gè)判斷框應(yīng)分別填寫(xiě)什么條件?
(2)求P的值.
(3)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案