如圖,若ABCD是一個(gè)等腰梯形,AB∥CD,M、N分別是DC、AB的中點(diǎn),已知=a,=b,=c,試用a、b、c表示.

解析:作CE∥DA交于E,作CF⊥AB交AB于F.

∵AB∥DC,CD∥DA,

∴AECD是平行四邊形,

=-=-b.

=-=-=a-c,

=--=b+c-a.

==+=+=+-

=-+-

=-b-c+a+(c-a)

=a-c-b.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD是機(jī)器人踢足球的場(chǎng)地,AB=170cm,AD=80cm,機(jī)器人先從AD的中點(diǎn)E進(jìn)入場(chǎng)地到點(diǎn)F處,EF=40cm,EF⊥AD.場(chǎng)地內(nèi)有一小球從B點(diǎn)向A點(diǎn)運(yùn)動(dòng),機(jī)器人從F點(diǎn)出發(fā)去截小球,現(xiàn)機(jī)器人和小球同時(shí)出發(fā),它們均作勻速直線運(yùn)動(dòng),并且小球運(yùn)動(dòng)的速度是機(jī)器人行走速度的2倍.若忽略機(jī)器人原地旋轉(zhuǎn)所需的時(shí)間,則機(jī)器人最快可在何處截住小球?
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,ABCD是一平面圖形的水平放置的斜二側(cè)直觀圖.在斜二側(cè)直觀圖中,ABCD是一直角梯形,AB∥CD,AD⊥CD,且BC與y軸平行.若AB=6,AD=2,則這個(gè)平面圖形的實(shí)際面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是一個(gè)邊長(zhǎng)為100米的正方形地皮,其中ATPS是一半徑為90米的扇形小山,其余部分都是平地,P是弧TS上一點(diǎn),現(xiàn)有一位開(kāi)發(fā)商想在平地上建造一個(gè)兩邊落在BC與CD上的長(zhǎng)方形停車場(chǎng)PQCR.
(1)若∠PAT=θ,試寫出四邊形RPQC的面積S關(guān)于θ的函數(shù)表達(dá)式,并寫出定義域;
(2)試求停車場(chǎng)的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)如圖,四邊形ABCD是正方形,延長(zhǎng)CD至E,使得DE=CD.若動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿正方形的邊按逆時(shí)針?lè)较蜻\(yùn)動(dòng)一周回到A點(diǎn),其中
AP
AB
AE
,下列判斷正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評(píng)閱計(jì)分.
1(1).(幾何證明選講選做題)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,
延長(zhǎng)AB和DC相交于點(diǎn)P,若
PB
PA
=
1
2
,
PC
PD
=
1
3
,則
BC
AD
的值為
6
6
6
6

(2).(坐標(biāo)系與參數(shù)方程選做題) 極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上
的動(dòng)點(diǎn),B為直線ρcosθ+ρsinθ-7=0的動(dòng)點(diǎn),則|AB|距離的最小值為
4
2
-2
4
2
-2

查看答案和解析>>

同步練習(xí)冊(cè)答案