若集合A={x|x2-x-2<0},B={x|-2<x<a},則“A∩B≠∅”的充要條件是


  1. A.
    a>-2
  2. B.
    a≤-2
  3. C.
    a>-1
  4. D.
    a≥-1
C
分析:由A={x|x2-x-2<0}={x|-1<x<2},B={x|-2<x<a},知“A∩B≠∅”?“a>-1”.
解答:∵A={x|x2-x-2<0}={x|-1<x<2},B={x|-2<x<a},
“A∩B≠∅”,
∴a>-1;
反之,∵A={x|x2-x-2<0}={x|-1<x<2},B={x|-2<x<a},
a>-1,
∴“A∩B≠∅”.
故“A∩B≠∅”的充要條件是a>-1.
故選C.
點(diǎn)評(píng):本題考查必要條件、充分條件、充要條件的判斷和應(yīng)用.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2≤9},B={x|x2-5x-6<0},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列四種說法:
①函數(shù)y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},則A∩B={-1};
③函數(shù)y=f(x)與函數(shù)y=f(-x)的圖象關(guān)于直線x=0對(duì)稱;
④已知A=B=R,對(duì)應(yīng)法則f:x→y=
1
x+1
,則對(duì)應(yīng)f是從A到B的映射.
其中你認(rèn)為不正確的是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州一模)若集合A={x|x2-2x<0},B={x|y=lg(x-1)},則A∩B為
{x|1<x<2}
{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2-|x|-6<0},B={x|
2x
≥1},求A∩CRB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|x2+ax+1=0,x∈R},集合B={1,2},且A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案