【題目】已知函數(shù)f(x)=loga ,(a>0,且a≠1),
(1)求函數(shù)f(x)的定義域.
(2)求使f(x)>0的x的取值范圍.
【答案】
(1)解: ,解得x>0,所以函數(shù)的定義域?yàn)椋?,+∞)
(2)解:根據(jù)題意,㏒a >0,
當(dāng)a>1時(shí), >1x>1;
當(dāng)0<a<1時(shí), <1且x>00<x<1
【解析】(1)利用對數(shù)的真數(shù)大于0,被開方數(shù)大于等于0求出定義域.(2)通過對底數(shù)a分類討論;利用函數(shù)的單調(diào)性將對數(shù)函數(shù)符號脫去,求出x的范圍.
【考點(diǎn)精析】本題主要考查了對數(shù)函數(shù)的定義域和對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的相關(guān)知識點(diǎn),需要掌握對數(shù)函數(shù)的定義域范圍:(0,+∞);過定點(diǎn)(1,0),即x=1時(shí),y=0;a>1時(shí)在(0,+∞)上是增函數(shù);0>a>1時(shí)在(0,+∞)上是減函數(shù)才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=2sin(3x﹣ ),有下列命題:①其表達(dá)式可改寫為y=2cos(3x﹣ );②y=f(x)的最小正周期為 ;③y=f(x)在區(qū)間( , )上是增函數(shù);④將函數(shù)y=2sin3x的圖象上所有點(diǎn)向左平行移動 個單位長度就得到函數(shù)y=f(x)的圖象.其中正確的命題的序號是(注:將你認(rèn)為正確的命題序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣1,1)上的函數(shù)f(x)滿足: ,當(dāng)x∈(﹣1,0)時(shí),有f(x)>0,且 .設(shè) ,則實(shí)數(shù)m與﹣1的大小關(guān)系為( )
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 對任意n∈N* , 點(diǎn)(an , Sn)都在函數(shù) 的圖象上.
(1)求數(shù)列{an}的首項(xiàng)a1和通項(xiàng)公式an;
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項(xiàng)和Tn;
(3)已知數(shù)列{cn}滿足 .若對任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[(﹣2,0)∪(0,2)]上的奇函數(shù),當(dāng)x>0,f(x)的圖象如圖所示,那么f(x)的值域是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實(shí)數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)若 ,且函數(shù) 在區(qū)間 上單調(diào)遞增,求實(shí)數(shù)a的范圍;
(2)若函數(shù)有兩個極值點(diǎn) , 且存在 滿足 ,令函數(shù) ,試判斷 零點(diǎn)的個數(shù)并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com