函數(shù)數(shù)學(xué)公式的最大值為________.


分析:由題意對函數(shù)求導(dǎo),然后解f′(x)=0方程,得到x=-1或x=1,將(-∞,+∞)分為三個區(qū)間,最后通過列表得出導(dǎo)數(shù)在這三個區(qū)間的符號,討論出函數(shù)的單調(diào)性,即可得出函數(shù)的最大最小值.
解答:由于函數(shù)f(x)的定義域為R
f'(x)=
令f'(x)=0得x=-1或x=1列表:
x(-∞,-1)-1(-1,1)1(1,∞)
f'(x)-0+0-
f(x)極小值極大值
由上表可以得到
當(dāng)x∈(-∞,-1)和x∈(1,+∞)時函數(shù)為減函數(shù)
當(dāng)x∈(-1,1)時,函數(shù)為增函數(shù)
所以當(dāng)x=-1時函數(shù)有極小值為-3;當(dāng)x=1時函數(shù)有極大值為
函數(shù)的最大值為
點評:本題考查了函數(shù)的求導(dǎo)及極值的概念,其基本思路是利用導(dǎo)函數(shù)的零點求出可能的極值點,再利用表格討論導(dǎo)數(shù)的正負(fù),從而求其單調(diào)區(qū)間,最后得出函數(shù)的極值,這是典型的化歸思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2
x+2
,(x∈[3,7])則函數(shù)的最大值為
2
5
2
5
,最小值為
2
9
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的個數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)函數(shù)的y=lg(x2+ax+1)的值域為R,則實數(shù)-2<a<2;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于x=
π
3
對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x-1
,(x∈[2,6])
,則函數(shù)的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2asin(2x-
π
6
)+b
的定義域為[0 , 
π
2
]
,函數(shù)的最大值為1,最小值為-5,求a和b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2-4x+6,當(dāng)x∈[1,4]時,則函數(shù)的最大值為
6
6

查看答案和解析>>

同步練習(xí)冊答案