【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求A到平面PBC的距離.
【答案】
(1)
證明:設(shè)BD與AC 的交點為O,連結(jié)EO,
∵ABCD是矩形,
∴O為BD的中點
∵E為PD的中點,
∴EO∥PB.
EO平面AEC,PB平面AEC
∴PB∥平面AEC;
(2)
解:∵AP=1,AD= ,三棱錐P﹣ABD的體積V= ,
∴V= = ,
∴AB= ,PB= = .
作AH⊥PB交PB于H,
由題意可知BC⊥平面PAB,
∴BC⊥AH,
故AH⊥平面PBC.
又在三角形PAB中,由射影定理可得:
A到平面PBC的距離 .
【解析】(1)設(shè)BD與AC 的交點為O,連結(jié)EO,通過直線與平面平行的判定定理證明PB∥平面AEC;(2)通過AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求出AB,作AH⊥PB角PB于H,說明AH就是A到平面PBC的距離.通過解三角形求解即可.
【考點精析】通過靈活運用直線與平面平行的判定,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)當時,求的單調(diào)區(qū)間;
(2)令,區(qū)間, 為自然對數(shù)的底數(shù)。
(ⅰ)若函數(shù)在區(qū)間上有兩個極值,求實數(shù)的取值范圍;
(ⅱ)設(shè)函數(shù)在區(qū)間上的兩個極值分別為和,
求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè){an}為單調(diào)遞增數(shù)列,首項a1=4,且滿足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 則a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=( )
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下三個關(guān)于圓錐曲線的命題中:
①設(shè)A,B為兩個定點,K為非零常數(shù),若|PA|﹣|PB|=K,則動點P的軌跡是雙曲線.
②方程2x2﹣5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線 與橢圓 +y2=1有相同的焦點.
④已知拋物線y2=2px,以過焦點的一條弦AB為直徑作圓,則此圓與準線相切
其中真命題為(寫出所以真命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,傾斜角為的直線過點與拋物線交于兩點, 為坐標原點, 的面積為.
(1)求;
(2)設(shè)點為直線與拋物線在第一象限的交點,過點作的斜率分別為的兩條弦,如果,證明直線過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是線段EF的中點.
(1)求證:AM∥平面BDE;
(2)求證:AM⊥平面BDF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某工廠每天固定成本是4萬元,每生產(chǎn)一件產(chǎn)品成本增加100元,工廠每件產(chǎn)品的出廠價定為元時,生產(chǎn)件產(chǎn)品的銷售收入是(元),為每天生產(chǎn)件產(chǎn)品的平均利潤(平均利潤=總利潤/總產(chǎn)量).銷售商從工廠每件元進貨后又以每件元銷售, ,其中為最高限價, 為銷售樂觀系數(shù),據(jù)市場調(diào)查, 是由當是, 的比例中項時來確定.
(1)每天生產(chǎn)量為多少時,平均利潤取得最大值?并求的最大值;
(2)求樂觀系數(shù)的值;
(3)若,當廠家平均利潤最大時,求與的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x)=2cos2x﹣2acosx﹣1﹣2a的最小值為g(a),a∈R
(1)求g(a);
(2)若g(a)= ,求a及此時f(x)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com