已知函數(shù)
(1)當時,求函數(shù)的單調區(qū)間;
(2)當函數(shù)自變量的取值區(qū)間與對應函數(shù)值的取值區(qū)間相同時,這樣的區(qū)間稱為函數(shù)的保值區(qū)間。設,試問函數(shù)上是否存在保值區(qū)間?若存在,請求出一個保值區(qū)間;若不存在,請說明理由.
(1)當時,的單調增區(qū)間為;當時,的單調增區(qū)間為,減區(qū)間為;(2)不存在保值區(qū)間.

試題分析:本題主要考查函數(shù)與導數(shù)以及運用導數(shù)求單調區(qū)間、極值等數(shù)學知識和方法,考查思維能力、運算能力、分析問題解決問題的能力,考查轉化思想和分類討論思想.第一問,先對求導,令,可以看出的單調區(qū)間是由0和1斷開的,現(xiàn)在所求的范圍是,所以將從0斷開,分兩部分進行討論,分別判斷的正負來決定的單調性;第二問,用反證法證明,先假設存在保值區(qū)間,先求出,再求導,因為,所以可以求出最值,即方程有兩個大于1的相異實根,下面證明函數(shù)有2個零點,通過2次求導,判斷單調性和極值確定只有一個零點,所以與有2個大于1的實根矛盾,所以假設不成立,所以不存在保值區(qū)間.
試題解析:(1)當時,,此時的單調增區(qū)間為;
時,,此時的單調增區(qū)間為,減區(qū)間為       4分
(2)函數(shù)上不存在保值區(qū)間。     5分
證明如下:
假設函數(shù)存在保值區(qū)間[a,b]. ,
時,所以為增函數(shù),     所以
即方程有兩個大于1的相異實根。           7分
,
,所以上單增,又,
即存在唯一的使得                        9分
時,為減函數(shù),當時,為增函數(shù),
所以函數(shù)處取得極小值。又因
所以在區(qū)間上只有一個零點,             11分
這與方程有兩個大于1的相異實根矛盾。
所以假設不成立,即函數(shù)上不存在保值區(qū)間。   12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)對恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)。(為常數(shù),
(Ⅰ)若是函數(shù)的一個極值點,求的值;
(Ⅱ)求證:當時,上是增函數(shù);
(Ⅲ)若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)設(其中的導函數(shù)),求的最大值;
(Ⅱ)求證:當時,有;
(Ⅲ)設,當時,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當時,求曲線處的切線方程;
(Ⅱ)討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)>0)
(1)若的一個極值點,求的值;
(2)上是增函數(shù),求a的取值范圍
(3)若對任意的總存在成立,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)f(x)=axn(1-x)+b(x>0),n為正整數(shù),a,b為常數(shù).曲線yf(x)在(1,f(1))處的切線方程為xy=1.
(1)求a,b的值;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),若,且,則的最小值是(  )
A.-16B.-12C.-10D.-8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)上的導函數(shù)為,且不等式恒成立,又常數(shù),滿足,則下列不等式一定成立的是        .
;②;③;④.

查看答案和解析>>

同步練習冊答案