精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=
1
3
與曲線C1,C2分別交于B,D.則四邊形ABOD的面積S為( 。
A、
4
9
B、
3
C、2
D、
1
3
分析:將四邊形ABOD的面積S分割成兩個小三角形的面積,通過求出交點坐標,可求面積
解答:解:(Ⅰ)由
y=x3
y=-2x3+3x
得交點O.A的坐標分別是(0,0),(1,1)
同理可求得B(
1
3
,
1
27
)
D(
1
3
25
27
)

S△ABO+S△OBD=
1
2
|BD|•|1-0|=
4
9

故選A.
點評:方程的思想,是分析數(shù)學問題中變量間的等量關系,從而建立方程或方程組,通過解方程或方程組,或者運用方程的性質去分析、轉化問題,使問題獲得解決.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=t(0<t<1)與曲線C1,C2分別交于B,D.
(Ⅰ)寫出四邊形ABOD的面積S與t的函數(shù)關系式S=f(t);
(Ⅱ)討論f(t)的單調性,并求f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•廣州一模)如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點D,B,連結OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃岡模擬)如圖,已知曲線c1
x2
a2
+
y2
b 2
=1(b>a>0,y≥0)
與拋物線c2:x2=2py(p>0)的交點分別為A、B,曲線c1和拋物線c2在點A處的切線分別為l1、l2,且l1、l2的斜率分別為k1、k2
(Ⅰ)當
b
a
為定值時,求證k1•k2為定值(與p無關),并求出這個定值;
(Ⅱ)若直線l2與y軸的交點為D(0,-2),當a2+b2取得最小值9時,求曲線c1和c2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:x2+y2=1(|x|<1),C2:x2=8y+1(|x|≥1),動直線l與C1相切,與C2相交于A,B兩點,曲線C2在A,B處的切線相交于點M.
(1)當MA⊥MB時,求直線l的方程;
(2)試問在y軸上是否存在兩個定點T1,T2,當直線MT1,MT2斜率存在時,兩直線的斜率之積恒為定值?若存在,求出滿足的T1,T2點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案