8.已知圓C的圓心坐標為(2,0),且圓C與直線x-$\sqrt{3}$y+2=0相切,求圓C的方程.

分析 由點到直線的距離公式,算出點(2,0)與直線x-$\sqrt{3}$y+2=0的距離,得出所求圓的半徑,即可寫出所求圓的標準方程.

解答 解:點(2,0)與直線x-$\sqrt{3}$y+2=0的距離為d=$\frac{4}{\sqrt{1+3}}$=2,
∵直線x-$\sqrt{3}$y+2=0與圓相切,
∴圓的半徑為2,可得圓的標準方程為(x-2)2+y2=4.

點評 本題求以定點為圓心,且與已知直線相切的圓方程.著重考查了圓的標準方程和點到直線的距離公式等知識,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.由不等式組$\left\{\begin{array}{l}{x-y+5≥0}\\{y≥5}\\{0≤x≤2}\end{array}\right.$圍成的三角形區(qū)域有一個外接圓,在該圓內(nèi)隨機取一點,該點落在三角形內(nèi)的概率是( 。
A.$\frac{2}{π}$B.(3-2$\sqrt{2}$)πC.$\frac{1}{π}$D.$\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知角θ的終邊經(jīng)過點P(-3a,4a),
(1)當a=1時,求sinθ-2cosθ的值;
(2)若sinθ=-$\frac{4}{5}$,求3tanθ+5cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知數(shù)列{an}中a1=1,且$\frac{{{a_{n+1}}}}{a_n}=\frac{n+2}{n}$,則an=$\frac{n(n+1)}{2}(n∈{N}^{*})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在下列各組函數(shù)中,f(x)與g(x)表示同一函數(shù)的是( 。
A.f(x)=1,g(x)=x0B.y=x與y=$\sqrt{{x}^{2}}$C.y=x2與y=(x+1)2D.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=($\frac{1}{3}$)x-log2x,0<a<b<c,f(a)f(b)f(c)<0,實數(shù)d是函數(shù)f(x)的一個零點.給出下列四個判斷:
①d>a;②d>b;③d<c;④d>c.其中可能成立的是①②③(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設△ABC的內(nèi)角A,B,C所對應的邊分別為a,b,c,已知$\frac{a+b}{sin(A+B)}$=$\frac{a-c}{sinA-sinB}$.
(Ⅰ)求角B;
(Ⅱ)若cosA=$\frac{{\sqrt{6}}}{3}$,且△ABC的面積為$\frac{{3\sqrt{2}+\sqrt{3}}}{2}$,試求sinC和a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.框圖如圖所示,最后輸出的a=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.不等式組$\left\{\begin{array}{l}x≥0\\ x-y-1≥0\\ 3x-2y-6≤0\end{array}\right.$所表示的平面區(qū)域的面積等于4,z=3x-2y的最大值為6.

查看答案和解析>>

同步練習冊答案